基于人工智能技术的音乐情感预测

Yen-Jung Lin, Su Yen Ding, Cheng-Kai Lu, T. Tang, Jun-Yu Shen
{"title":"基于人工智能技术的音乐情感预测","authors":"Yen-Jung Lin, Su Yen Ding, Cheng-Kai Lu, T. Tang, Jun-Yu Shen","doi":"10.1109/ICCE-Taiwan58799.2023.10226902","DOIUrl":null,"url":null,"abstract":"Music is often described as the \"language of emotion,\" and emotion prediction is important as it can impact future behavior. This paper proposes an audio-based emotion prediction model using a One-Dimensional Convolutional Neural Network (1D-CNN) approach, with Mel-Frequency Cepstral Coefficients (MFCCs) extracted as audio features. Preliminary results show an overall accuracy of 93%, but the imbalanced dataset used may cause bias in the accuracy of each emotion. Further research is needed to investigate the classification of audio features and 1D-CNN layers.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion Prediction in Music Based on Artificial Intelligence Techniques\",\"authors\":\"Yen-Jung Lin, Su Yen Ding, Cheng-Kai Lu, T. Tang, Jun-Yu Shen\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music is often described as the \\\"language of emotion,\\\" and emotion prediction is important as it can impact future behavior. This paper proposes an audio-based emotion prediction model using a One-Dimensional Convolutional Neural Network (1D-CNN) approach, with Mel-Frequency Cepstral Coefficients (MFCCs) extracted as audio features. Preliminary results show an overall accuracy of 93%, but the imbalanced dataset used may cause bias in the accuracy of each emotion. Further research is needed to investigate the classification of audio features and 1D-CNN layers.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音乐通常被描述为“情感的语言”,情感预测很重要,因为它可以影响未来的行为。本文提出了一种基于音频的情绪预测模型,该模型采用一维卷积神经网络(1D-CNN)方法,提取Mel-Frequency倒谱系数(MFCCs)作为音频特征。初步结果显示,总体准确率为93%,但使用的不平衡数据集可能会导致每种情绪的准确性存在偏差。音频特征和1D-CNN层的分类有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion Prediction in Music Based on Artificial Intelligence Techniques
Music is often described as the "language of emotion," and emotion prediction is important as it can impact future behavior. This paper proposes an audio-based emotion prediction model using a One-Dimensional Convolutional Neural Network (1D-CNN) approach, with Mel-Frequency Cepstral Coefficients (MFCCs) extracted as audio features. Preliminary results show an overall accuracy of 93%, but the imbalanced dataset used may cause bias in the accuracy of each emotion. Further research is needed to investigate the classification of audio features and 1D-CNN layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1