情感分析的混合词表示和最小Bi-GRU模型

Yun Liu, Yanping Fu, Yajing Wang, Yong Cui, Zhiyuan Zhang
{"title":"情感分析的混合词表示和最小Bi-GRU模型","authors":"Yun Liu, Yanping Fu, Yajing Wang, Yong Cui, Zhiyuan Zhang","doi":"10.1109/Ubi-Media.2019.00015","DOIUrl":null,"url":null,"abstract":"In the mission of natural language processing, sentiment analysis is a formidable challenge due to the complexity of deep network architecture and the lack of standard sentiment word representation. In this paper, we proposed a new learning method of the word representation for the comprehensive information of texts and a minimal Bi-GRU (bidirectional gate recurrent unit) model for the task of sentiment classification. First, for capturing sentiment information of words, the supervised three-layer network is used for construct sentiment word representation. We propose the mixed word representation to denote the classification characteristics, which combines the word embedding of neural probabilistic language model with the proposed the sentiment word representation. Next, we propose bidirectional GRU network including forward and backward propagation to consider the semantic relations before and after sentences, meanwhile, to simple the architecture, we apply minimal GRU network. Then, we combine minimal Bi-GRU model with the mixed word representation taking a full account of semantic and sentiment information to classify the sentiment data set as Movie Reviews and IMDB data set. Experimental results demonstrate that the simplicity of the model and superiority of the performance.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mixed Word Representation and Minimal Bi-GRU Model for Sentiment Analysis\",\"authors\":\"Yun Liu, Yanping Fu, Yajing Wang, Yong Cui, Zhiyuan Zhang\",\"doi\":\"10.1109/Ubi-Media.2019.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the mission of natural language processing, sentiment analysis is a formidable challenge due to the complexity of deep network architecture and the lack of standard sentiment word representation. In this paper, we proposed a new learning method of the word representation for the comprehensive information of texts and a minimal Bi-GRU (bidirectional gate recurrent unit) model for the task of sentiment classification. First, for capturing sentiment information of words, the supervised three-layer network is used for construct sentiment word representation. We propose the mixed word representation to denote the classification characteristics, which combines the word embedding of neural probabilistic language model with the proposed the sentiment word representation. Next, we propose bidirectional GRU network including forward and backward propagation to consider the semantic relations before and after sentences, meanwhile, to simple the architecture, we apply minimal GRU network. Then, we combine minimal Bi-GRU model with the mixed word representation taking a full account of semantic and sentiment information to classify the sentiment data set as Movie Reviews and IMDB data set. Experimental results demonstrate that the simplicity of the model and superiority of the performance.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在自然语言处理的任务中,由于深度网络结构的复杂性和缺乏标准的情感词表示,情感分析是一个巨大的挑战。在本文中,我们提出了一种新的文本综合信息的词表示学习方法和情感分类任务的最小Bi-GRU(双向门递归单元)模型。首先,为了捕获词的情感信息,采用监督三层网络构建情感词表示;我们提出了混合词表示来表示分类特征,它将神经概率语言模型的词嵌入与提出的情感词表示相结合。其次,我们提出了双向GRU网络,包括正向和反向传播,以考虑句子前后的语义关系,同时,为了简化结构,我们采用了最小GRU网络。然后,我们将最小Bi-GRU模型与充分考虑语义和情感信息的混合词表示相结合,将情感数据集分类为Movie Reviews和IMDB数据集。实验结果表明,该模型简单,性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixed Word Representation and Minimal Bi-GRU Model for Sentiment Analysis
In the mission of natural language processing, sentiment analysis is a formidable challenge due to the complexity of deep network architecture and the lack of standard sentiment word representation. In this paper, we proposed a new learning method of the word representation for the comprehensive information of texts and a minimal Bi-GRU (bidirectional gate recurrent unit) model for the task of sentiment classification. First, for capturing sentiment information of words, the supervised three-layer network is used for construct sentiment word representation. We propose the mixed word representation to denote the classification characteristics, which combines the word embedding of neural probabilistic language model with the proposed the sentiment word representation. Next, we propose bidirectional GRU network including forward and backward propagation to consider the semantic relations before and after sentences, meanwhile, to simple the architecture, we apply minimal GRU network. Then, we combine minimal Bi-GRU model with the mixed word representation taking a full account of semantic and sentiment information to classify the sentiment data set as Movie Reviews and IMDB data set. Experimental results demonstrate that the simplicity of the model and superiority of the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1