{"title":"带有能量收集发射器和接收器的单用户和多访问通道","authors":"A. Arafa, S. Ulukus","doi":"10.1109/GlobalSIP.2014.7032109","DOIUrl":null,"url":null,"abstract":"We consider the effects of decoding costs in energy harvesting communication systems. In our setting, receivers, in addition to transmitters, rely solely on energy harvested from nature, and need to spend some energy in order to decode their intended packets. We model the decoding energy as an increasing convex function of the rate of the incoming data. In this setting, in addition to the traditional energy causality constraints at the transmitters, we have the decoding causality constraints, where energy spent by the receiver for decoding cannot exceed its harvested energy. We first consider the point-to-point single-user problem where the goal is to maximize the total throughput by a given deadline subject to both energy and decoding causality constraints. We then consider the multiple access channel (MAC) where the transmitters and the receiver harvest energy from nature, and characterize the maximum departure region.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Single-user and multiple access channels with energy harvesting transmitters and receivers\",\"authors\":\"A. Arafa, S. Ulukus\",\"doi\":\"10.1109/GlobalSIP.2014.7032109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the effects of decoding costs in energy harvesting communication systems. In our setting, receivers, in addition to transmitters, rely solely on energy harvested from nature, and need to spend some energy in order to decode their intended packets. We model the decoding energy as an increasing convex function of the rate of the incoming data. In this setting, in addition to the traditional energy causality constraints at the transmitters, we have the decoding causality constraints, where energy spent by the receiver for decoding cannot exceed its harvested energy. We first consider the point-to-point single-user problem where the goal is to maximize the total throughput by a given deadline subject to both energy and decoding causality constraints. We then consider the multiple access channel (MAC) where the transmitters and the receiver harvest energy from nature, and characterize the maximum departure region.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-user and multiple access channels with energy harvesting transmitters and receivers
We consider the effects of decoding costs in energy harvesting communication systems. In our setting, receivers, in addition to transmitters, rely solely on energy harvested from nature, and need to spend some energy in order to decode their intended packets. We model the decoding energy as an increasing convex function of the rate of the incoming data. In this setting, in addition to the traditional energy causality constraints at the transmitters, we have the decoding causality constraints, where energy spent by the receiver for decoding cannot exceed its harvested energy. We first consider the point-to-point single-user problem where the goal is to maximize the total throughput by a given deadline subject to both energy and decoding causality constraints. We then consider the multiple access channel (MAC) where the transmitters and the receiver harvest energy from nature, and characterize the maximum departure region.