{"title":"具有局部几何形状预测表示的触觉渲染","authors":"June-Gyu Park, G. Niemeyer","doi":"10.1109/HAPTIC.2004.1287217","DOIUrl":null,"url":null,"abstract":"Haptic rendering of large and detailed virtual objects can require a significant computational load. Built out of a vast number of primitives, the object models can strain algorithms such as collision detection and constrained optimization, which are widely used in haptics applications. Nevertheless, to provide the necessary fidelity, haptic servo loops need to operate at 1 kHz or above. Separating the haptic processes from the more time consuming processes has long been a standard technique to protect more sensitive servo loops from the computational burden of collision detection and graphic display. In addition, local approximation techniques have been developed to allow fast update rates on small areas of the overall model around a known contact point. Operations on the complete model are only executed at a much slower rate. However, none of the existing methods fully exploit the model's topological information. We propose the use of the quadedge data structure to store the object model in addition to a hierarchical data structure used in collision detection. The compact, edge-based graph structure provides a topological map and the necessary tools to navigate easily along the model's surface. Also, we propose to use a velocity vector as an indicator of the intended user's motion. Such information leads to the prediction of the user's position within a short time frame. The proposed methods allow us to efficiently build local intermediate models based on predictions of the contact point movement.","PeriodicalId":384123,"journal":{"name":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Haptic rendering with predictive representation of local geometry\",\"authors\":\"June-Gyu Park, G. Niemeyer\",\"doi\":\"10.1109/HAPTIC.2004.1287217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haptic rendering of large and detailed virtual objects can require a significant computational load. Built out of a vast number of primitives, the object models can strain algorithms such as collision detection and constrained optimization, which are widely used in haptics applications. Nevertheless, to provide the necessary fidelity, haptic servo loops need to operate at 1 kHz or above. Separating the haptic processes from the more time consuming processes has long been a standard technique to protect more sensitive servo loops from the computational burden of collision detection and graphic display. In addition, local approximation techniques have been developed to allow fast update rates on small areas of the overall model around a known contact point. Operations on the complete model are only executed at a much slower rate. However, none of the existing methods fully exploit the model's topological information. We propose the use of the quadedge data structure to store the object model in addition to a hierarchical data structure used in collision detection. The compact, edge-based graph structure provides a topological map and the necessary tools to navigate easily along the model's surface. Also, we propose to use a velocity vector as an indicator of the intended user's motion. Such information leads to the prediction of the user's position within a short time frame. The proposed methods allow us to efficiently build local intermediate models based on predictions of the contact point movement.\",\"PeriodicalId\":384123,\"journal\":{\"name\":\"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HAPTIC.2004.1287217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTIC.2004.1287217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

大型和详细的虚拟物体的触觉渲染可能需要大量的计算负荷。由大量的原语构建而成的对象模型可以对碰撞检测和约束优化等算法进行应变,这些算法在触觉应用中得到了广泛应用。然而,为了提供必要的保真度,触觉伺服回路需要在1khz或更高的频率下工作。将触觉过程与耗时更长的过程分离一直是一种标准技术,以保护更敏感的伺服回路免受碰撞检测和图形显示的计算负担。此外,局部近似技术已被开发,以允许在已知接触点周围的整个模型的小区域上快速更新速率。完整模型上的操作只是以慢得多的速度执行。然而,现有的方法都没有充分利用模型的拓扑信息。除了碰撞检测中使用的分层数据结构外,我们还建议使用四边形数据结构来存储对象模型。紧凑的、基于边的图结构提供了一个拓扑图和必要的工具,可以沿着模型的表面轻松导航。此外,我们建议使用速度矢量作为预期用户运动的指示器。这些信息可以在短时间内预测用户的位置。所提出的方法使我们能够基于接触点运动的预测有效地建立局部中间模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Haptic rendering with predictive representation of local geometry
Haptic rendering of large and detailed virtual objects can require a significant computational load. Built out of a vast number of primitives, the object models can strain algorithms such as collision detection and constrained optimization, which are widely used in haptics applications. Nevertheless, to provide the necessary fidelity, haptic servo loops need to operate at 1 kHz or above. Separating the haptic processes from the more time consuming processes has long been a standard technique to protect more sensitive servo loops from the computational burden of collision detection and graphic display. In addition, local approximation techniques have been developed to allow fast update rates on small areas of the overall model around a known contact point. Operations on the complete model are only executed at a much slower rate. However, none of the existing methods fully exploit the model's topological information. We propose the use of the quadedge data structure to store the object model in addition to a hierarchical data structure used in collision detection. The compact, edge-based graph structure provides a topological map and the necessary tools to navigate easily along the model's surface. Also, we propose to use a velocity vector as an indicator of the intended user's motion. Such information leads to the prediction of the user's position within a short time frame. The proposed methods allow us to efficiently build local intermediate models based on predictions of the contact point movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physics-based burr haptic simulation: tuning and evaluation Assembling virtual fixtures for guidance in training environments Teleoperation with sensor/actuator asymmetry: task performance with partial force feedback Toward event-based haptics: rendering contact using open-loop force pulses Performance analysis of steady-hand teleoperation versus cooperative manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1