基于遗传算法的ALINEA匝道计量控制参数优化

Xu Yang, L. Chu, W. Recker
{"title":"基于遗传算法的ALINEA匝道计量控制参数优化","authors":"Xu Yang, L. Chu, W. Recker","doi":"10.1109/ITSC.2002.1041291","DOIUrl":null,"url":null,"abstract":"ALINEA, a local feedback ramp-metering strategy, has been shown to be a remarkably simple, highly efficient and easy application. This paper presents a microscopic simulation-based method to optimize the operational parameters of the algorithm, as an alternative to the difficult task of fine-tuning them in real-world testing. Four parameters, including the update cycle of the metering rate, a constant regulator, the location and desired occupancy of the downstream detector station, are considered. A genetic algorithm that searches the optimal combination of parameter values is employed. Simulation results show that the genetic algorithm is able to find a set of parameter values that can optimize the performance of the ALINEA algorithm.","PeriodicalId":365722,"journal":{"name":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"GA-based parameter optimization for the ALINEA ramp metering control\",\"authors\":\"Xu Yang, L. Chu, W. Recker\",\"doi\":\"10.1109/ITSC.2002.1041291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ALINEA, a local feedback ramp-metering strategy, has been shown to be a remarkably simple, highly efficient and easy application. This paper presents a microscopic simulation-based method to optimize the operational parameters of the algorithm, as an alternative to the difficult task of fine-tuning them in real-world testing. Four parameters, including the update cycle of the metering rate, a constant regulator, the location and desired occupancy of the downstream detector station, are considered. A genetic algorithm that searches the optimal combination of parameter values is employed. Simulation results show that the genetic algorithm is able to find a set of parameter values that can optimize the performance of the ALINEA algorithm.\",\"PeriodicalId\":365722,\"journal\":{\"name\":\"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2002.1041291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2002.1041291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

ALINEA是一种非常简单、高效和易于应用的局部反馈匝道计量策略。本文提出了一种基于微观模拟的方法来优化算法的运行参数,以替代在实际测试中对其进行微调的困难任务。考虑了计量速率的更新周期、恒定调节器、下游检测站的位置和期望占用等四个参数。采用遗传算法搜索参数值的最优组合。仿真结果表明,遗传算法能够找到一组能够优化ALINEA算法性能的参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GA-based parameter optimization for the ALINEA ramp metering control
ALINEA, a local feedback ramp-metering strategy, has been shown to be a remarkably simple, highly efficient and easy application. This paper presents a microscopic simulation-based method to optimize the operational parameters of the algorithm, as an alternative to the difficult task of fine-tuning them in real-world testing. Four parameters, including the update cycle of the metering rate, a constant regulator, the location and desired occupancy of the downstream detector station, are considered. A genetic algorithm that searches the optimal combination of parameter values is employed. Simulation results show that the genetic algorithm is able to find a set of parameter values that can optimize the performance of the ALINEA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling schedule recovery processes in transit operations for bus arrival time prediction Accurate forward road geometry estimation for collision warning applications A novel lumped spatial model of tyre contact A statistical model of vehicle emissions and fuel consumption Mobile location tracking with velocity estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1