中国芦荟电信号处理的预测

Lanzhou Wang, Haixia Li, Dongsheng Li, Jiayin Zhao
{"title":"中国芦荟电信号处理的预测","authors":"Lanzhou Wang, Haixia Li, Dongsheng Li, Jiayin Zhao","doi":"10.1109/ICNC.2007.127","DOIUrl":null,"url":null,"abstract":"A novel model of the electric wave signal of the plant is established for the first time, there is x (n) =1.9591 times (n - 1) - 1.4927 times (n - 2) + 0.7205 times (n - 3) - 0.80219 times (n - 4) + 0.44582 times (n-5)- 0.30807 times (n - 6) + 0.19658 times (n - 7) - 0.34506 times (n - 8) + 0.52419 times (n - 9) - 0.339 times (n - 10) + 0.16681 times (n - 11) - 0.09664 times (n - 12) + 0.3625 times (n - 17) - 0.02005 times (n - 18); the fitting variance is 0.315951 and the standard deviation is 0.562095 in Aloe vera var. chinensis. It has a well effect that the fitting variance and standard deviation of models are the minimum. It is very well in the prediction effect of the AR model to the forecast 10 values of the plant electric wave signals respectively is well, and proves that the coefficient of AR model can represent main characters of plant electric wave signals. It is very importance that the function of plant electric wave signals are used to understand some regulations on the growth relationship between plants and environments.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prediction on Electric Signals Processing of Aloe Vera Var. Chinensis\",\"authors\":\"Lanzhou Wang, Haixia Li, Dongsheng Li, Jiayin Zhao\",\"doi\":\"10.1109/ICNC.2007.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel model of the electric wave signal of the plant is established for the first time, there is x (n) =1.9591 times (n - 1) - 1.4927 times (n - 2) + 0.7205 times (n - 3) - 0.80219 times (n - 4) + 0.44582 times (n-5)- 0.30807 times (n - 6) + 0.19658 times (n - 7) - 0.34506 times (n - 8) + 0.52419 times (n - 9) - 0.339 times (n - 10) + 0.16681 times (n - 11) - 0.09664 times (n - 12) + 0.3625 times (n - 17) - 0.02005 times (n - 18); the fitting variance is 0.315951 and the standard deviation is 0.562095 in Aloe vera var. chinensis. It has a well effect that the fitting variance and standard deviation of models are the minimum. It is very well in the prediction effect of the AR model to the forecast 10 values of the plant electric wave signals respectively is well, and proves that the coefficient of AR model can represent main characters of plant electric wave signals. It is very importance that the function of plant electric wave signals are used to understand some regulations on the growth relationship between plants and environments.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小说模型建立了植物电波信号的第一次,有x (n) = (n - 1)的1.9591倍- 1.4927倍(n - 2) + (n - 3)的0.7205倍- 0.80219倍(n - 4) +(存在)的0.44582倍- 0.30807倍(n - 6) + (n - 7)的0.19658倍- 0.34506倍(n - 8) + (n - 9)的0.52419倍- 0.339倍(n - 10) + (n - 11)的0.16681倍- 0.09664倍(n - 12) + (n - 17)的0.3625倍- 0.02005倍(n - 18);芦荟的拟合方差为0.315951,标准差为0.562095。模型的拟合方差和标准差均最小,效果良好。AR模型对植物电波信号的10个预测值的预测效果都很好,证明了AR模型的系数能够很好地表征植物电波信号的主要特征。利用植物电波信号的功能来了解植物与环境之间生长关系的一些规律是非常重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Prediction on Electric Signals Processing of Aloe Vera Var. Chinensis
A novel model of the electric wave signal of the plant is established for the first time, there is x (n) =1.9591 times (n - 1) - 1.4927 times (n - 2) + 0.7205 times (n - 3) - 0.80219 times (n - 4) + 0.44582 times (n-5)- 0.30807 times (n - 6) + 0.19658 times (n - 7) - 0.34506 times (n - 8) + 0.52419 times (n - 9) - 0.339 times (n - 10) + 0.16681 times (n - 11) - 0.09664 times (n - 12) + 0.3625 times (n - 17) - 0.02005 times (n - 18); the fitting variance is 0.315951 and the standard deviation is 0.562095 in Aloe vera var. chinensis. It has a well effect that the fitting variance and standard deviation of models are the minimum. It is very well in the prediction effect of the AR model to the forecast 10 values of the plant electric wave signals respectively is well, and proves that the coefficient of AR model can represent main characters of plant electric wave signals. It is very importance that the function of plant electric wave signals are used to understand some regulations on the growth relationship between plants and environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1