{"title":"基于自适应SPCNN时间编码的p -峰值深度神经网络","authors":"Yuli Chen, Huiting Yao, Miao Ma, Zhao Pei, Xingwei Li, Zengguo Sun","doi":"10.1109/IUCC/DSCI/SmartCNS.2019.00089","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a P-spike deep neural network (P-SDNN) for image classification based on an adaptive simplified pulse coupled neural network (SPCNN) temporal coding. The proposed P-SDNN model introduces a SPCNN tem-coding layer into a spiking deep neural network (SDNN) with parameters adjusted by unsupervised STDP learning rule. The advantage of the proposed SPCNN temporal coding is to obtain adaptive time steps in terms of different input images. Each time step corresponds to a spiking-timing map which may contain a semantic segmentation of the input image. This is guaranteed by the working principle of SPCNN that the higher the neuron intensity is, the larger its internal activity will be and the earlier it will fire. And the adjacent neurons with similar intensity will pulse synchronously in a spikingtiming map. We evaluate the proposed P-SDNN model in the tasks of image classification on the Caltech face/motorbike and MNIST datasets. The experiments show that, under the same experimental conditions, the proposed P-SDNN model performs better than the SDNN model without SPCNN tem-coding.","PeriodicalId":410905,"journal":{"name":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P-Spiking Deep Neural Network Based on Adaptive SPCNN Temporal Coding\",\"authors\":\"Yuli Chen, Huiting Yao, Miao Ma, Zhao Pei, Xingwei Li, Zengguo Sun\",\"doi\":\"10.1109/IUCC/DSCI/SmartCNS.2019.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a P-spike deep neural network (P-SDNN) for image classification based on an adaptive simplified pulse coupled neural network (SPCNN) temporal coding. The proposed P-SDNN model introduces a SPCNN tem-coding layer into a spiking deep neural network (SDNN) with parameters adjusted by unsupervised STDP learning rule. The advantage of the proposed SPCNN temporal coding is to obtain adaptive time steps in terms of different input images. Each time step corresponds to a spiking-timing map which may contain a semantic segmentation of the input image. This is guaranteed by the working principle of SPCNN that the higher the neuron intensity is, the larger its internal activity will be and the earlier it will fire. And the adjacent neurons with similar intensity will pulse synchronously in a spikingtiming map. We evaluate the proposed P-SDNN model in the tasks of image classification on the Caltech face/motorbike and MNIST datasets. The experiments show that, under the same experimental conditions, the proposed P-SDNN model performs better than the SDNN model without SPCNN tem-coding.\",\"PeriodicalId\":410905,\"journal\":{\"name\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于自适应简化脉冲耦合神经网络(SPCNN)时序编码的P-spike深度神经网络(P-SDNN)图像分类方法。提出的P-SDNN模型将SPCNN术语编码层引入到峰值深度神经网络(SDNN)中,并通过无监督STDP学习规则调整参数。所提出的SPCNN时间编码的优点是可以根据不同的输入图像获得自适应的时间步长。每个时间步对应于一个峰值时序映射,该映射可能包含输入图像的语义分割。SPCNN的工作原理保证了这一点,即神经元强度越高,其内部活动越大,发射越早。而相邻的具有相似强度的神经元将在一个脉冲时序图中同步脉冲。我们在加州理工学院人脸/摩托车和MNIST数据集的图像分类任务中评估了所提出的P-SDNN模型。实验表明,在相同的实验条件下,所提出的P-SDNN模型的性能优于未进行SPCNN词编码的SDNN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P-Spiking Deep Neural Network Based on Adaptive SPCNN Temporal Coding
In this paper, we propose a P-spike deep neural network (P-SDNN) for image classification based on an adaptive simplified pulse coupled neural network (SPCNN) temporal coding. The proposed P-SDNN model introduces a SPCNN tem-coding layer into a spiking deep neural network (SDNN) with parameters adjusted by unsupervised STDP learning rule. The advantage of the proposed SPCNN temporal coding is to obtain adaptive time steps in terms of different input images. Each time step corresponds to a spiking-timing map which may contain a semantic segmentation of the input image. This is guaranteed by the working principle of SPCNN that the higher the neuron intensity is, the larger its internal activity will be and the earlier it will fire. And the adjacent neurons with similar intensity will pulse synchronously in a spikingtiming map. We evaluate the proposed P-SDNN model in the tasks of image classification on the Caltech face/motorbike and MNIST datasets. The experiments show that, under the same experimental conditions, the proposed P-SDNN model performs better than the SDNN model without SPCNN tem-coding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the RTWC 2019 Workshop Chairs Message from the NGDN 2019 Workshop Chairs Ideation Support System with Personalized Knowledge Level Prediction Message from the DSCI 2019 General Chairs Connection Degree Cost and Reward Based Algorithm in Cognitive Radio Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1