一个非参数联合分类与价格选择模型

Srikanth Jagabathula, Paat Rusmevichientong
{"title":"一个非参数联合分类与价格选择模型","authors":"Srikanth Jagabathula, Paat Rusmevichientong","doi":"10.2139/ssrn.2286923","DOIUrl":null,"url":null,"abstract":"The selection of products and prices offered by a firm significantly impacts its profits. Existing approaches do not provide flexible models that capture the joint effect of assortment and price. We propose a nonparametric framework in which each customer is represented by a particular price threshold and a particular preference list over the alternatives. The customers follow a two-stage choice process; they consider the set of products with prices less than the threshold and choose the most preferred product from the set considered. We develop a tractable nonparametric expectation maximization (EM) algorithm to fit the model to the aggregate transaction data and design an efficient algorithm to determine the profit-maximizing combination of offer set and price. We also identify classes of pricing structures of increasing complexity, which determine the computational complexity of the estimation and decision problems. Our pricing structures are naturally expressed as business constraints, allowing a mana...","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"A Nonparametric Joint Assortment and Price Choice Model\",\"authors\":\"Srikanth Jagabathula, Paat Rusmevichientong\",\"doi\":\"10.2139/ssrn.2286923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection of products and prices offered by a firm significantly impacts its profits. Existing approaches do not provide flexible models that capture the joint effect of assortment and price. We propose a nonparametric framework in which each customer is represented by a particular price threshold and a particular preference list over the alternatives. The customers follow a two-stage choice process; they consider the set of products with prices less than the threshold and choose the most preferred product from the set considered. We develop a tractable nonparametric expectation maximization (EM) algorithm to fit the model to the aggregate transaction data and design an efficient algorithm to determine the profit-maximizing combination of offer set and price. We also identify classes of pricing structures of increasing complexity, which determine the computational complexity of the estimation and decision problems. Our pricing structures are naturally expressed as business constraints, allowing a mana...\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2286923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2286923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

企业所提供的产品和价格的选择对其利润有很大的影响。现有的方法没有提供灵活的模型来捕捉分类和价格的共同效应。我们提出了一个非参数框架,其中每个客户都由特定的价格阈值和替代方案的特定偏好列表表示。客户遵循两个阶段的选择过程;他们考虑价格低于阈值的产品集合,并从考虑的集合中选择最受欢迎的产品。我们开发了一种易于处理的非参数期望最大化算法来拟合模型,并设计了一种有效的算法来确定出价集和价格的利润最大化组合。我们还确定了越来越复杂的定价结构的类别,这决定了估计和决策问题的计算复杂性。我们的定价结构自然地表达为业务约束,允许管理…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nonparametric Joint Assortment and Price Choice Model
The selection of products and prices offered by a firm significantly impacts its profits. Existing approaches do not provide flexible models that capture the joint effect of assortment and price. We propose a nonparametric framework in which each customer is represented by a particular price threshold and a particular preference list over the alternatives. The customers follow a two-stage choice process; they consider the set of products with prices less than the threshold and choose the most preferred product from the set considered. We develop a tractable nonparametric expectation maximization (EM) algorithm to fit the model to the aggregate transaction data and design an efficient algorithm to determine the profit-maximizing combination of offer set and price. We also identify classes of pricing structures of increasing complexity, which determine the computational complexity of the estimation and decision problems. Our pricing structures are naturally expressed as business constraints, allowing a mana...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1