快速RRT* 3d切片规划自主探索使用MAVs

Álvaro Martínez Novo, Liang Lu, P. Campoy
{"title":"快速RRT* 3d切片规划自主探索使用MAVs","authors":"Álvaro Martínez Novo, Liang Lu, P. Campoy","doi":"10.1142/s2301385022500108","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge to build an autonomous exploration system using Micro-Aerial Vehicles (MAVs). MAVs are capable of flying autonomously, generating collision-free paths to navigate in unknown areas and also reconstructing the environment at which they are deployed. One of the contributions of our system is the “3D-Sliced Planner” for exploration. The main innovation is the low computational resources needed. This is because Optimal-Frontier-Points (OFP) to explore are computed in 2D slices of the 3D environment using a global Rapidly-exploring Random Tree (RRT) frontier detector. Then, the MAV can plan path routes to these points to explore the surroundings with our new proposed local “FAST RRT* Planner” that uses a tree reconnection algorithm based on cost, and a collision checking algorithm based on Signed Distance Field (SDF). The results show the proposed explorer takes 43.95% less time to compute exploration points and paths when compared with the State-of-the-Art represented by the Receding Horizon Next Best View Planner (RH-NBVP) in Gazebo simulations.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAST RRT* 3D-Sliced Planner for Autonomous Exploration Using MAVs\",\"authors\":\"Álvaro Martínez Novo, Liang Lu, P. Campoy\",\"doi\":\"10.1142/s2301385022500108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the challenge to build an autonomous exploration system using Micro-Aerial Vehicles (MAVs). MAVs are capable of flying autonomously, generating collision-free paths to navigate in unknown areas and also reconstructing the environment at which they are deployed. One of the contributions of our system is the “3D-Sliced Planner” for exploration. The main innovation is the low computational resources needed. This is because Optimal-Frontier-Points (OFP) to explore are computed in 2D slices of the 3D environment using a global Rapidly-exploring Random Tree (RRT) frontier detector. Then, the MAV can plan path routes to these points to explore the surroundings with our new proposed local “FAST RRT* Planner” that uses a tree reconnection algorithm based on cost, and a collision checking algorithm based on Signed Distance Field (SDF). The results show the proposed explorer takes 43.95% less time to compute exploration points and paths when compared with the State-of-the-Art represented by the Receding Horizon Next Best View Planner (RH-NBVP) in Gazebo simulations.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2301385022500108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385022500108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了利用微型飞行器(MAVs)构建自主探测系统的挑战。MAVs能够自主飞行,在未知区域生成无碰撞路径,并重建部署环境。我们系统的贡献之一是用于探索的“3d切片规划器”。主要的创新是所需的计算资源少。这是因为要探索的最佳边界点(OFP)是使用全局快速探索随机树(RRT)边界检测器在3D环境的2D切片中计算的。然后,MAV可以通过我们新提出的本地“FAST RRT* Planner”规划到这些点的路径路线,以探索周围环境,该计划使用基于成本的树重连接算法和基于签名距离场(SDF)的碰撞检查算法。结果表明,该算法在计算勘探点和路径的时间上,与采用后退地平线下一个最佳视点规划算法(RH-NBVP)的算法相比,节省了43.95%的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAST RRT* 3D-Sliced Planner for Autonomous Exploration Using MAVs
This paper addresses the challenge to build an autonomous exploration system using Micro-Aerial Vehicles (MAVs). MAVs are capable of flying autonomously, generating collision-free paths to navigate in unknown areas and also reconstructing the environment at which they are deployed. One of the contributions of our system is the “3D-Sliced Planner” for exploration. The main innovation is the low computational resources needed. This is because Optimal-Frontier-Points (OFP) to explore are computed in 2D slices of the 3D environment using a global Rapidly-exploring Random Tree (RRT) frontier detector. Then, the MAV can plan path routes to these points to explore the surroundings with our new proposed local “FAST RRT* Planner” that uses a tree reconnection algorithm based on cost, and a collision checking algorithm based on Signed Distance Field (SDF). The results show the proposed explorer takes 43.95% less time to compute exploration points and paths when compared with the State-of-the-Art represented by the Receding Horizon Next Best View Planner (RH-NBVP) in Gazebo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1