医学诊断系统的可能性模糊c均值聚类

B. Simhachalam, G. Ganesan
{"title":"医学诊断系统的可能性模糊c均值聚类","authors":"B. Simhachalam, G. Ganesan","doi":"10.1109/IC3I.2014.7019729","DOIUrl":null,"url":null,"abstract":"Classification or Clustering is the task of grouping similar objects based on the similarity among the individuals. The techniques using in clustering are mostly unsupervised methods. In this study, Possibilistic Fuzzy C-means (PFCM) clustering technique is used to classify the patients into different clusters of thyroid diseases. Further, the results of Possibilistic Fuzzy C-means clustering algorithm and Fuzzy c-Means clustering (FCM) algorithm are compared according to the classification performance. The results exhibit that the Possibilistic Fuzzy C-means clustering algorithm performs well.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Possibilistic Fuzzy C-means clustering on medical diagnostic systems\",\"authors\":\"B. Simhachalam, G. Ganesan\",\"doi\":\"10.1109/IC3I.2014.7019729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification or Clustering is the task of grouping similar objects based on the similarity among the individuals. The techniques using in clustering are mostly unsupervised methods. In this study, Possibilistic Fuzzy C-means (PFCM) clustering technique is used to classify the patients into different clusters of thyroid diseases. Further, the results of Possibilistic Fuzzy C-means clustering algorithm and Fuzzy c-Means clustering (FCM) algorithm are compared according to the classification performance. The results exhibit that the Possibilistic Fuzzy C-means clustering algorithm performs well.\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

分类或聚类是基于个体之间的相似性对相似对象进行分组的任务。聚类中使用的技术大多是无监督方法。本研究采用可能性模糊c均值(PFCM)聚类技术对甲状腺疾病患者进行分类。进一步,根据分类性能比较了可能性模糊c均值聚类算法和模糊c均值聚类(FCM)算法的分类结果。结果表明,可能性模糊c均值聚类算法具有良好的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Possibilistic Fuzzy C-means clustering on medical diagnostic systems
Classification or Clustering is the task of grouping similar objects based on the similarity among the individuals. The techniques using in clustering are mostly unsupervised methods. In this study, Possibilistic Fuzzy C-means (PFCM) clustering technique is used to classify the patients into different clusters of thyroid diseases. Further, the results of Possibilistic Fuzzy C-means clustering algorithm and Fuzzy c-Means clustering (FCM) algorithm are compared according to the classification performance. The results exhibit that the Possibilistic Fuzzy C-means clustering algorithm performs well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services Video retrieval: An accurate approach based on Kirsch descriptor Microarray data classification using Fuzzy K-Nearest Neighbor Assessment of data quality in Web sites: towards a model A novel cross layer wireless mesh network protocol for distributed generation in electrical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1