用于改变数据结构的智能聚类算法

Georg Peters, R. Weber
{"title":"用于改变数据结构的智能聚类算法","authors":"Georg Peters, R. Weber","doi":"10.1504/IJIDSS.2009.028645","DOIUrl":null,"url":null,"abstract":"Many real life applications are characterised by changing data structures. For example, the buying patterns of retail customers may change due to changing economical parameters (increasing oil prices motivate to buy smaller cars) or a technological break-through (replacement of analogue by digital cameras). In such dynamic environments the parameters obtained in data mining projects need to be updated to adequately describe the actual real life situation. Dynamic data mining addresses such situations. It has been applied successfully in many projects, like in traffic data analysis. In our paper, we apply the concepts of dynamic data mining to rough k-means.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Intelligent cluster algorithms for changing data structures\",\"authors\":\"Georg Peters, R. Weber\",\"doi\":\"10.1504/IJIDSS.2009.028645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real life applications are characterised by changing data structures. For example, the buying patterns of retail customers may change due to changing economical parameters (increasing oil prices motivate to buy smaller cars) or a technological break-through (replacement of analogue by digital cameras). In such dynamic environments the parameters obtained in data mining projects need to be updated to adequately describe the actual real life situation. Dynamic data mining addresses such situations. It has been applied successfully in many projects, like in traffic data analysis. In our paper, we apply the concepts of dynamic data mining to rough k-means.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2009.028645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2009.028645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

许多实际应用程序的特点是数据结构的变化。例如,零售客户的购买模式可能会因经济参数的变化(油价上涨促使购买小型汽车)或技术突破(数码相机取代模拟相机)而改变。在这种动态环境中,数据挖掘项目中获得的参数需要不断更新,以充分描述现实生活中的实际情况。动态数据挖掘解决了这种情况。它已经成功地应用于许多项目中,如交通数据分析。在本文中,我们将动态数据挖掘的概念应用于粗糙k均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent cluster algorithms for changing data structures
Many real life applications are characterised by changing data structures. For example, the buying patterns of retail customers may change due to changing economical parameters (increasing oil prices motivate to buy smaller cars) or a technological break-through (replacement of analogue by digital cameras). In such dynamic environments the parameters obtained in data mining projects need to be updated to adequately describe the actual real life situation. Dynamic data mining addresses such situations. It has been applied successfully in many projects, like in traffic data analysis. In our paper, we apply the concepts of dynamic data mining to rough k-means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning-based approach for malware classification A novel approach to design a digital clock triggered modified pulse latch for 16-bit shift register Program viewer - a defence portfolio capability management system Archival solution API to upload bulk file and managing the data in cloud storage Face recognition under occlusion for user authentication and invigilation in remotely distributed online assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1