{"title":"利用叠加偏振技术突破led -摄像机通信的吞吐量限制","authors":"Xiang Zou, Jianwei Liu, Jinsong Han","doi":"10.1109/INFOCOM53939.2023.10228936","DOIUrl":null,"url":null,"abstract":"With the popularity of LED infrastructure and the camera on smartphone, LED-Camera visible light communication (VLC) has become a realistic and promising technology. However, the existing LED-Camera VLC has limited throughput due to the sampling manner of camera. In this paper, by introducing a polarization dimension, we propose a hybrid modulation scheme with LED and polarization signals to boost throughput. Nevertheless, directly mixing LED and polarized signals may suffer from channel conflict. We exploit well-designed packet structure and Symmetric Return-to-Zero Inverted (SRZI) coding to overcome the conflict. In addition, in the demodulation of hybrid signal, we alleviate the noise caused by polarization on the LED signals by polarization background subtraction. We further propose a pixel-free approach to correct the perspective distortion caused by the shift of view angle by adding polarizers around the liquid crystal array. We build a prototype of this hybrid modulation scheme using off-the-shelf optical components. Extensive experimental results demonstrate that the hybrid modulation scheme can achieve reliable communication, achieving 13.4 kbps throughput, which is 400 % of the existing state-of-the-art LED-Camera VLC.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Throughput Limit of LED-Camera Communication via Superposed Polarization\",\"authors\":\"Xiang Zou, Jianwei Liu, Jinsong Han\",\"doi\":\"10.1109/INFOCOM53939.2023.10228936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularity of LED infrastructure and the camera on smartphone, LED-Camera visible light communication (VLC) has become a realistic and promising technology. However, the existing LED-Camera VLC has limited throughput due to the sampling manner of camera. In this paper, by introducing a polarization dimension, we propose a hybrid modulation scheme with LED and polarization signals to boost throughput. Nevertheless, directly mixing LED and polarized signals may suffer from channel conflict. We exploit well-designed packet structure and Symmetric Return-to-Zero Inverted (SRZI) coding to overcome the conflict. In addition, in the demodulation of hybrid signal, we alleviate the noise caused by polarization on the LED signals by polarization background subtraction. We further propose a pixel-free approach to correct the perspective distortion caused by the shift of view angle by adding polarizers around the liquid crystal array. We build a prototype of this hybrid modulation scheme using off-the-shelf optical components. Extensive experimental results demonstrate that the hybrid modulation scheme can achieve reliable communication, achieving 13.4 kbps throughput, which is 400 % of the existing state-of-the-art LED-Camera VLC.\",\"PeriodicalId\":387707,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM53939.2023.10228936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10228936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Breaking the Throughput Limit of LED-Camera Communication via Superposed Polarization
With the popularity of LED infrastructure and the camera on smartphone, LED-Camera visible light communication (VLC) has become a realistic and promising technology. However, the existing LED-Camera VLC has limited throughput due to the sampling manner of camera. In this paper, by introducing a polarization dimension, we propose a hybrid modulation scheme with LED and polarization signals to boost throughput. Nevertheless, directly mixing LED and polarized signals may suffer from channel conflict. We exploit well-designed packet structure and Symmetric Return-to-Zero Inverted (SRZI) coding to overcome the conflict. In addition, in the demodulation of hybrid signal, we alleviate the noise caused by polarization on the LED signals by polarization background subtraction. We further propose a pixel-free approach to correct the perspective distortion caused by the shift of view angle by adding polarizers around the liquid crystal array. We build a prototype of this hybrid modulation scheme using off-the-shelf optical components. Extensive experimental results demonstrate that the hybrid modulation scheme can achieve reliable communication, achieving 13.4 kbps throughput, which is 400 % of the existing state-of-the-art LED-Camera VLC.