离散微相序列在砂岩储层渗透率估算中的应用

W. Al-Mudhafar
{"title":"离散微相序列在砂岩储层渗透率估算中的应用","authors":"W. Al-Mudhafar","doi":"10.3997/2214-4609.201902189","DOIUrl":null,"url":null,"abstract":"Summary Several cases have been conducted to address the permeability modeling and estimation, but all were not accurate because of the heteroscedasticity between data. Therefore, integrating the microfacies sequences into permeability modeling became a crucial to obtain accurate prediction and then improve the overall reservoir characterization. The discrete microfacies distribution leads to distinct regression lines given each microfacies type. Therefore, the Random Forest (RF) algorithm was considered in this paper for microfacies classification and Smooth Generalized Additive Modeling (sGAM) was considered for permeability modeling as a function of well logging data and the predicted discrete microfacies distribution. The well logging records that were incorporated into the microfacies classification and permeability modeling: SP, ILD and density porosity logs. These two approaches were adopted in a well in a sandstone reservoir, located in East Texas basin. The effectiveness of using RF and sGAM approaches was investigated by their performance to handle wide ranges of data given the five microfacies types. More specifically, the Random Forest Modeling was super accurate to predict the microfacies distribution at the missing intervals for the same well and other wells. Moreover, the sGAM resulted to obtain accurate modeling and prediction of permeability in high and low permeable intervals.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incorporating Discrete Microfacies Sequences to Improve Permeability Estimation in Sandstone Reservoirs\",\"authors\":\"W. Al-Mudhafar\",\"doi\":\"10.3997/2214-4609.201902189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Several cases have been conducted to address the permeability modeling and estimation, but all were not accurate because of the heteroscedasticity between data. Therefore, integrating the microfacies sequences into permeability modeling became a crucial to obtain accurate prediction and then improve the overall reservoir characterization. The discrete microfacies distribution leads to distinct regression lines given each microfacies type. Therefore, the Random Forest (RF) algorithm was considered in this paper for microfacies classification and Smooth Generalized Additive Modeling (sGAM) was considered for permeability modeling as a function of well logging data and the predicted discrete microfacies distribution. The well logging records that were incorporated into the microfacies classification and permeability modeling: SP, ILD and density porosity logs. These two approaches were adopted in a well in a sandstone reservoir, located in East Texas basin. The effectiveness of using RF and sGAM approaches was investigated by their performance to handle wide ranges of data given the five microfacies types. More specifically, the Random Forest Modeling was super accurate to predict the microfacies distribution at the missing intervals for the same well and other wells. Moreover, the sGAM resulted to obtain accurate modeling and prediction of permeability in high and low permeable intervals.\",\"PeriodicalId\":186806,\"journal\":{\"name\":\"Petroleum Geostatistics 2019\",\"volume\":\"250 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geostatistics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201902189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解决渗透率的建模和估计问题,已经进行了几个案例,但由于数据之间的异方差,所有案例都不准确。因此,将微相序列整合到渗透率建模中,对于获得准确的渗透率预测,进而提高储层整体表征能力至关重要。微相分布的离散性导致每种微相类型都有明显的回归线。因此,本文采用随机森林(Random Forest, RF)算法对微相进行分类,采用光滑广义加性建模(Smooth Generalized Additive Modeling, sgram)方法对渗透率进行建模,将其作为测井数据和预测离散微相分布的函数。将测井记录纳入微相分类和渗透率建模:SP、ILD和密度孔隙度测井。在东德克萨斯盆地砂岩油藏的一口井中采用了这两种方法。利用RF和sgram方法处理五种微相类型的大范围数据的性能,对其有效性进行了研究。更具体地说,随机森林模型在预测同一井和其他井在缺失层段的微相分布时非常准确。此外,该方法还实现了高、低渗透层渗透率的精确建模和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating Discrete Microfacies Sequences to Improve Permeability Estimation in Sandstone Reservoirs
Summary Several cases have been conducted to address the permeability modeling and estimation, but all were not accurate because of the heteroscedasticity between data. Therefore, integrating the microfacies sequences into permeability modeling became a crucial to obtain accurate prediction and then improve the overall reservoir characterization. The discrete microfacies distribution leads to distinct regression lines given each microfacies type. Therefore, the Random Forest (RF) algorithm was considered in this paper for microfacies classification and Smooth Generalized Additive Modeling (sGAM) was considered for permeability modeling as a function of well logging data and the predicted discrete microfacies distribution. The well logging records that were incorporated into the microfacies classification and permeability modeling: SP, ILD and density porosity logs. These two approaches were adopted in a well in a sandstone reservoir, located in East Texas basin. The effectiveness of using RF and sGAM approaches was investigated by their performance to handle wide ranges of data given the five microfacies types. More specifically, the Random Forest Modeling was super accurate to predict the microfacies distribution at the missing intervals for the same well and other wells. Moreover, the sGAM resulted to obtain accurate modeling and prediction of permeability in high and low permeable intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1