从稠油/水体系实验数据确定真残余油饱和度和油相对渗透率的新认识

S. Esmaeili, A. Kantzas, B. Maini
{"title":"从稠油/水体系实验数据确定真残余油饱和度和油相对渗透率的新认识","authors":"S. Esmaeili, A. Kantzas, B. Maini","doi":"10.2118/208913-ms","DOIUrl":null,"url":null,"abstract":"\n Determination of true residual oil saturation and oil relative permeability curve for heavy oil/water systems requires extensive effort and time as the breakthrough time occurs early in the imbibition process and the history match techniques are not able to obtain these two parameters perfectly. The aim of this work is to provide a new insight into the determination of residual oil saturation and oil relative permeability from core flooding in heavy oil/water systems at different temperatures.\n Literature claimed that the ratio of water relative permeability to oil relative permeability should be considered besides the production and pressure drop data in history matching to determine the residual oil saturation more accurately. In this regard, different relative permeability curves from our previous experimental works are incorporated in a series of simulations that were run for up to 100 PV of water injection. Production and pressure drop data were generated where a normal error distribution is added to the input data. The history matching runs (considering relative permeability ratio) are carried out to examine how many pore volumes of water need to be injected to reach the true residual oil saturation accurately in different experiments.\n The history matching results (with a Corey relative permeability model), employing the production data, pressure drop data, and the ratio of water relative permeability to oil relative permeability, which can be calculated fairly accurate from the Welge method, confirm that water relative permeability exponent is generally independent of the volume of injected water. Since the irreducible water saturation can be determined nicely during the oil flooding due to the inverse mobility ratio, the water relative permeability is not a function of volume of injected water. In contrast, determination of the true residual oil saturation in five experiments out of six is predicted with an error less than 5%. For several systems at different temperatures, at least 40 PV of water needs to be injected to result in accurate residual oil saturation determination. The oil exponent determination reveals a deviation of 20%-60% from the entered value to the simulation. The ratio of water relative permeability to oil relative permeability should be inserted into the simulation for acceptable history matching of relative permeability determination.\n The estimation of true residual oil saturation for relative permeability determination from the experimental data cannot be achieved easily. In this study, a new technique described by in the literature has been examined and tested to determine the required pore volume of injected water in different heavy oil/water systems within a wide range of temperatures.","PeriodicalId":146458,"journal":{"name":"Day 1 Wed, March 16, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Insight into the Determination of True Residual Oil Saturation and Oil Relative Permeability from the Experimental Data in Heavy Oil/Water Systems\",\"authors\":\"S. Esmaeili, A. Kantzas, B. Maini\",\"doi\":\"10.2118/208913-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Determination of true residual oil saturation and oil relative permeability curve for heavy oil/water systems requires extensive effort and time as the breakthrough time occurs early in the imbibition process and the history match techniques are not able to obtain these two parameters perfectly. The aim of this work is to provide a new insight into the determination of residual oil saturation and oil relative permeability from core flooding in heavy oil/water systems at different temperatures.\\n Literature claimed that the ratio of water relative permeability to oil relative permeability should be considered besides the production and pressure drop data in history matching to determine the residual oil saturation more accurately. In this regard, different relative permeability curves from our previous experimental works are incorporated in a series of simulations that were run for up to 100 PV of water injection. Production and pressure drop data were generated where a normal error distribution is added to the input data. The history matching runs (considering relative permeability ratio) are carried out to examine how many pore volumes of water need to be injected to reach the true residual oil saturation accurately in different experiments.\\n The history matching results (with a Corey relative permeability model), employing the production data, pressure drop data, and the ratio of water relative permeability to oil relative permeability, which can be calculated fairly accurate from the Welge method, confirm that water relative permeability exponent is generally independent of the volume of injected water. Since the irreducible water saturation can be determined nicely during the oil flooding due to the inverse mobility ratio, the water relative permeability is not a function of volume of injected water. In contrast, determination of the true residual oil saturation in five experiments out of six is predicted with an error less than 5%. For several systems at different temperatures, at least 40 PV of water needs to be injected to result in accurate residual oil saturation determination. The oil exponent determination reveals a deviation of 20%-60% from the entered value to the simulation. The ratio of water relative permeability to oil relative permeability should be inserted into the simulation for acceptable history matching of relative permeability determination.\\n The estimation of true residual oil saturation for relative permeability determination from the experimental data cannot be achieved easily. In this study, a new technique described by in the literature has been examined and tested to determine the required pore volume of injected water in different heavy oil/water systems within a wide range of temperatures.\",\"PeriodicalId\":146458,\"journal\":{\"name\":\"Day 1 Wed, March 16, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 16, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208913-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 16, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208913-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稠油/水体系的真残余油饱和度和油相对渗透率曲线的确定需要大量的精力和时间,因为突破时间发生在渗吸过程的早期,而历史拟合技术并不能很好地获得这两个参数。这项工作的目的是为不同温度下稠油/水体系岩心驱油剩余油饱和度和油相对渗透率的确定提供新的见解。文献认为,除了历史拟合的产量和压降数据外,还应考虑水相对渗透率与油相对渗透率之比,以更准确地确定剩余油饱和度。在这方面,我们将之前实验工作中的不同相对渗透率曲线纳入了一系列模拟中,这些模拟运行了高达100 PV的注水。在输入数据中加入正态误差分布,生成生产和压降数据。在考虑相对渗透率比的情况下,进行历史拟合运行,考察不同实验需要注入多少孔隙体积的水才能准确达到真实残余油饱和度。利用Welge方法计算得到的产量数据、压降数据和水相对渗透率与油相对渗透率之比的历史拟合结果(Corey相对渗透率模型)证实,水相对渗透率指数通常与注入水量无关。由于油驱过程中不可还原水饱和度可以通过反流度比很好地确定,因此水的相对渗透率不是注入水量的函数。相比之下,在6个实验中,有5个实验的真实剩余油饱和度预测误差小于5%。对于不同温度下的几个体系,至少需要注入40 PV的水才能准确测定残余油饱和度。石油指数的测定结果显示,与模拟值的偏差为20%-60%。为了实现相对渗透率测定的可接受历史匹配,应在模拟中引入水相对渗透率与油相对渗透率的比值。利用实验数据确定相对渗透率时,真实残余油饱和度的估计并不容易实现。在本研究中,研究人员对文献中描述的一种新技术进行了研究和测试,以确定在广泛温度范围内不同稠油/水体系中注入水所需的孔隙体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Insight into the Determination of True Residual Oil Saturation and Oil Relative Permeability from the Experimental Data in Heavy Oil/Water Systems
Determination of true residual oil saturation and oil relative permeability curve for heavy oil/water systems requires extensive effort and time as the breakthrough time occurs early in the imbibition process and the history match techniques are not able to obtain these two parameters perfectly. The aim of this work is to provide a new insight into the determination of residual oil saturation and oil relative permeability from core flooding in heavy oil/water systems at different temperatures. Literature claimed that the ratio of water relative permeability to oil relative permeability should be considered besides the production and pressure drop data in history matching to determine the residual oil saturation more accurately. In this regard, different relative permeability curves from our previous experimental works are incorporated in a series of simulations that were run for up to 100 PV of water injection. Production and pressure drop data were generated where a normal error distribution is added to the input data. The history matching runs (considering relative permeability ratio) are carried out to examine how many pore volumes of water need to be injected to reach the true residual oil saturation accurately in different experiments. The history matching results (with a Corey relative permeability model), employing the production data, pressure drop data, and the ratio of water relative permeability to oil relative permeability, which can be calculated fairly accurate from the Welge method, confirm that water relative permeability exponent is generally independent of the volume of injected water. Since the irreducible water saturation can be determined nicely during the oil flooding due to the inverse mobility ratio, the water relative permeability is not a function of volume of injected water. In contrast, determination of the true residual oil saturation in five experiments out of six is predicted with an error less than 5%. For several systems at different temperatures, at least 40 PV of water needs to be injected to result in accurate residual oil saturation determination. The oil exponent determination reveals a deviation of 20%-60% from the entered value to the simulation. The ratio of water relative permeability to oil relative permeability should be inserted into the simulation for acceptable history matching of relative permeability determination. The estimation of true residual oil saturation for relative permeability determination from the experimental data cannot be achieved easily. In this study, a new technique described by in the literature has been examined and tested to determine the required pore volume of injected water in different heavy oil/water systems within a wide range of temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steam Additives to Reduce the Steam-Oil Ratio in SAGD: Experimental Analysis, Pilot Design, and Field Application Powering Offshore Installations with Wind Energy Quantification of Phase Behaviour and Physical Properties of Alkane Solvents/CO2/ Water/Heavy Oil Systems under Equilibrium and Nonequilibrium Conditions Profile Ultrasonic Velocity Measurements Performed on Slabbed Core: Implications for High-Resolution Permeability Prediction in Low-Permeability Rocks Holistic Real-Time Drilling Parameters Optimization Delivers Best-in-Class Drilling Performance and Preserves Bit Condition - A Case History from an Integrated Project in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1