基于agent的中文命名实体识别方法

Shiren Ye, Tat-Seng Chua, Jimin Liu
{"title":"基于agent的中文命名实体识别方法","authors":"Shiren Ye, Tat-Seng Chua, Jimin Liu","doi":"10.3115/1072228.1072308","DOIUrl":null,"url":null,"abstract":"Chinese NE (Named Entity) recognition is a difficult problem because of the uncertainty in word segmentation and flexibility in language structure. This paper proposes the use of a rationality model in a multi-agent framework to tackle this problem. We employ a greedy strategy and use the NE rationality model to evaluate and detect all possible NEs in the text. We then treat the process of selecting the best possible NEs as a multi-agent negotiation problem. The resulting system is robust and is able to handle different types of NE effectively. Our test on the MET-2 test corpus indicates that our system is able to achieve high F1 values of above 92% on all NE types.","PeriodicalId":437823,"journal":{"name":"Proceedings of the 19th international conference on Computational linguistics -","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"An Agent-based Approach to Chinese Named Entity Recognition\",\"authors\":\"Shiren Ye, Tat-Seng Chua, Jimin Liu\",\"doi\":\"10.3115/1072228.1072308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese NE (Named Entity) recognition is a difficult problem because of the uncertainty in word segmentation and flexibility in language structure. This paper proposes the use of a rationality model in a multi-agent framework to tackle this problem. We employ a greedy strategy and use the NE rationality model to evaluate and detect all possible NEs in the text. We then treat the process of selecting the best possible NEs as a multi-agent negotiation problem. The resulting system is robust and is able to handle different types of NE effectively. Our test on the MET-2 test corpus indicates that our system is able to achieve high F1 values of above 92% on all NE types.\",\"PeriodicalId\":437823,\"journal\":{\"name\":\"Proceedings of the 19th international conference on Computational linguistics -\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th international conference on Computational linguistics -\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1072228.1072308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Computational linguistics -","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1072228.1072308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

由于分词的不确定性和语言结构的灵活性,汉语命名实体识别是一个难题。本文提出在多智能体框架中使用合理性模型来解决这一问题。我们采用贪婪策略,并使用网元合理性模型来评估和检测文本中所有可能的网元。然后,我们将选择最佳可能网元的过程视为一个多智能体协商问题。所得到的系统具有鲁棒性,能够有效地处理不同类型的网元。我们在MET-2测试语料库上的测试表明,我们的系统能够在所有网元类型上达到92%以上的高F1值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Agent-based Approach to Chinese Named Entity Recognition
Chinese NE (Named Entity) recognition is a difficult problem because of the uncertainty in word segmentation and flexibility in language structure. This paper proposes the use of a rationality model in a multi-agent framework to tackle this problem. We employ a greedy strategy and use the NE rationality model to evaluate and detect all possible NEs in the text. We then treat the process of selecting the best possible NEs as a multi-agent negotiation problem. The resulting system is robust and is able to handle different types of NE effectively. Our test on the MET-2 test corpus indicates that our system is able to achieve high F1 values of above 92% on all NE types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphological Analysis of the Spontaneous Speech Corpus An Agent-based Approach to Chinese Named Entity Recognition Natural Language and Inference in a Computer Game Meta-evaluation of Summaries in a Cross-lingual Environment using Content-based Metrics Learning Verb Argument Structure from Minimally Annotated Corpora
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1