机器学习方法在棋类游戏中的实现

Joanna Wiśniewska, Paweł Wójcik
{"title":"机器学习方法在棋类游戏中的实现","authors":"Joanna Wiśniewska, Paweł Wójcik","doi":"10.5604/01.3001.0015.9191","DOIUrl":null,"url":null,"abstract":"The following work presents methods of using machine learning to teach a computer to play chess. The first method is based on using records of games played by highly ranked players. The second method is based on the Monte Carlo Tree Search algorithm and reinforcement learning.\n\n","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods in game of chess implementation\",\"authors\":\"Joanna Wiśniewska, Paweł Wójcik\",\"doi\":\"10.5604/01.3001.0015.9191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following work presents methods of using machine learning to teach a computer to play chess. The first method is based on using records of games played by highly ranked players. The second method is based on the Monte Carlo Tree Search algorithm and reinforcement learning.\\n\\n\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.9191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.9191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下面的工作介绍了使用机器学习教计算机下棋的方法。第一种方法是基于高排名玩家的游戏记录。第二种方法是基于蒙特卡罗树搜索算法和强化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning methods in game of chess implementation
The following work presents methods of using machine learning to teach a computer to play chess. The first method is based on using records of games played by highly ranked players. The second method is based on the Monte Carlo Tree Search algorithm and reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image caption generation using transfer learning Overview of selected reinforcement learning solutions to several game theory problems When AI Fails to See: The Challenge of Adversarial Patches Fuzzy sets in modeling patient’s disease states in medical diagnostics support algorithms Analysis of selected reinforcement learning applications in contract bridge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1