基于水文资料的长短期记忆发电预测模型

Moyinoluwa Abidemi Bode, A. Thompson, Boniface Kayode Alese, Lafe Olurinde
{"title":"基于水文资料的长短期记忆发电预测模型","authors":"Moyinoluwa Abidemi Bode, A. Thompson, Boniface Kayode Alese, Lafe Olurinde","doi":"10.1109/PowerAfrica.2019.8928638","DOIUrl":null,"url":null,"abstract":"The level of Small Hydro Power (SHP) development in Nigeria is spreading over many river basins and also various unexploited SHP sites discovered which can contribute to the power generation of the nation. These SHP potential sites can be estimated to a capacity of over 3000MW if utilized. Hydrological data are analysed from some rivers to know their potential on what they can generate to provide the rural populace for industrialization, employment generation and development. Hence, an estimate of power generation is done via Long Short-Term Memory predictive model using Python, Keras framework, and Tensor Flow backend as tools.","PeriodicalId":308661,"journal":{"name":"2019 IEEE PES/IAS PowerAfrica","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive model of power generation using Long Short Term Memory on hydrological data\",\"authors\":\"Moyinoluwa Abidemi Bode, A. Thompson, Boniface Kayode Alese, Lafe Olurinde\",\"doi\":\"10.1109/PowerAfrica.2019.8928638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The level of Small Hydro Power (SHP) development in Nigeria is spreading over many river basins and also various unexploited SHP sites discovered which can contribute to the power generation of the nation. These SHP potential sites can be estimated to a capacity of over 3000MW if utilized. Hydrological data are analysed from some rivers to know their potential on what they can generate to provide the rural populace for industrialization, employment generation and development. Hence, an estimate of power generation is done via Long Short-Term Memory predictive model using Python, Keras framework, and Tensor Flow backend as tools.\",\"PeriodicalId\":308661,\"journal\":{\"name\":\"2019 IEEE PES/IAS PowerAfrica\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES/IAS PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica.2019.8928638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2019.8928638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尼日利亚的小水力发电(SHP)发展水平正在蔓延到许多河流流域和各种未开发的SHP站点,这些站点可以为国家的发电做出贡献。如果利用这些潜在的小水电场地,估计容量可超过3000兆瓦。对一些河流的水文数据进行了分析,以了解它们在为农村人口提供工业化、创造就业和发展方面的潜力。因此,使用Python、Keras框架和Tensor Flow后端作为工具,通过长短期记忆预测模型来估算发电量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive model of power generation using Long Short Term Memory on hydrological data
The level of Small Hydro Power (SHP) development in Nigeria is spreading over many river basins and also various unexploited SHP sites discovered which can contribute to the power generation of the nation. These SHP potential sites can be estimated to a capacity of over 3000MW if utilized. Hydrological data are analysed from some rivers to know their potential on what they can generate to provide the rural populace for industrialization, employment generation and development. Hence, an estimate of power generation is done via Long Short-Term Memory predictive model using Python, Keras framework, and Tensor Flow backend as tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling, Analysis of Current Trajectories of a Nine Phase Induction Machine for Regenerative Capabilities A Model Algorithm for Smart Power Supply and Distribution in Residential Building REPLAN: Multi-Region Power System Planning Approach for Nigeria Eddy current losses computation in conductives materials: case of Aluminum and Permanent Magnet-Part I: Frequency and current effects Performance Analysis of Fuzzy Logic Maximum Power Point Tracking Scheme for Solar PV System Under Varying Load and Atmospheric Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1