基于方面的情感分析评估教师绩效的综合数据集

Abhijit Bhowmik, N. Mohd, M. Noor, Saef Ullah, M. Miah, Mazid-Ul-Haque Debajyoti, Karmaker
{"title":"基于方面的情感分析评估教师绩效的综合数据集","authors":"Abhijit Bhowmik, N. Mohd, M. Noor, Saef Ullah, M. Miah, Mazid-Ul-Haque Debajyoti, Karmaker","doi":"10.53799/ajse.v22i2.862","DOIUrl":null,"url":null,"abstract":"Teacher performance evaluation is an essential task in the field of education. In recent years, aspect-based sentiment analysis (ABSA) has emerged as a promising technique for evaluating teaching performance by providing a more nuanced analysis of student evaluations. This article presents a novel approach for creating a large-scale dataset for ABSA of teacher performance evaluation. The dataset was constructed by collecting student feedback from American International University-Bangladesh and then labeled by undergraduate-level students into three sentiment classes: positive, negative, and neutral. The dataset was carefully cleaned and preprocessed to ensure data quality and consistency. The final dataset contains over 2,000,000 student feedback instances related to teacher performance, making it one of the largest datasets for ABSA of teacher performance evaluation. This dataset can be used to develop and evaluate ABSA models for teacher performance evaluation, ultimately leading to better feedback and improvement for educators. The results of this study demonstrate the usefulness and effectiveness of ABSA in evaluating teacher performance and highlight the importance of creating high-quality datasets for this task.","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive dataset for aspect-based sentiment analysis in evaluating teacher performance\",\"authors\":\"Abhijit Bhowmik, N. Mohd, M. Noor, Saef Ullah, M. Miah, Mazid-Ul-Haque Debajyoti, Karmaker\",\"doi\":\"10.53799/ajse.v22i2.862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teacher performance evaluation is an essential task in the field of education. In recent years, aspect-based sentiment analysis (ABSA) has emerged as a promising technique for evaluating teaching performance by providing a more nuanced analysis of student evaluations. This article presents a novel approach for creating a large-scale dataset for ABSA of teacher performance evaluation. The dataset was constructed by collecting student feedback from American International University-Bangladesh and then labeled by undergraduate-level students into three sentiment classes: positive, negative, and neutral. The dataset was carefully cleaned and preprocessed to ensure data quality and consistency. The final dataset contains over 2,000,000 student feedback instances related to teacher performance, making it one of the largest datasets for ABSA of teacher performance evaluation. This dataset can be used to develop and evaluate ABSA models for teacher performance evaluation, ultimately leading to better feedback and improvement for educators. The results of this study demonstrate the usefulness and effectiveness of ABSA in evaluating teacher performance and highlight the importance of creating high-quality datasets for this task.\",\"PeriodicalId\":224436,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering (AJSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering (AJSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53799/ajse.v22i2.862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v22i2.862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

教师绩效评价是教育领域的一项重要工作。近年来,基于方面的情感分析(ABSA)通过对学生评价进行更细致的分析,成为一种很有前途的教学绩效评估技术。本文提出了一种为教师绩效评估的ABSA创建大规模数据集的新方法。该数据集是通过收集美国国际大学孟加拉国分校的学生反馈构建的,然后由本科生将其标记为三种情绪类别:积极、消极和中性。数据集经过仔细清理和预处理,以确保数据质量和一致性。最终的数据集包含超过200万个与教师绩效相关的学生反馈实例,使其成为教师绩效评估ABSA最大的数据集之一。该数据集可用于开发和评估教师绩效评估的ABSA模型,最终为教育工作者提供更好的反馈和改进。本研究的结果证明了ABSA在评估教师绩效方面的有用性和有效性,并强调了为此任务创建高质量数据集的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive dataset for aspect-based sentiment analysis in evaluating teacher performance
Teacher performance evaluation is an essential task in the field of education. In recent years, aspect-based sentiment analysis (ABSA) has emerged as a promising technique for evaluating teaching performance by providing a more nuanced analysis of student evaluations. This article presents a novel approach for creating a large-scale dataset for ABSA of teacher performance evaluation. The dataset was constructed by collecting student feedback from American International University-Bangladesh and then labeled by undergraduate-level students into three sentiment classes: positive, negative, and neutral. The dataset was carefully cleaned and preprocessed to ensure data quality and consistency. The final dataset contains over 2,000,000 student feedback instances related to teacher performance, making it one of the largest datasets for ABSA of teacher performance evaluation. This dataset can be used to develop and evaluate ABSA models for teacher performance evaluation, ultimately leading to better feedback and improvement for educators. The results of this study demonstrate the usefulness and effectiveness of ABSA in evaluating teacher performance and highlight the importance of creating high-quality datasets for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Prediction of A Power Generation Gas Turbine Using An Optimized Artificial Neural Network Model Advancing Fuzzy Logic: A Hierarchical Fuzzy System Approach WVEHDD: Weighted Voting based Ensemble System for Heart Disease Detection Predictions of Malaysia Age-Specific Fertility Rates using the Lee-Carter and the Functional Data Approaches Performance Analysis of Automatic Generation Control for a Multi-Area Interconnected System Using Genetic Algorithm and Particle Swarm Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1