FDCluster:在多个微阵列数据集中挖掘无候选维护的频繁封闭判别双聚类

Miao Wang, Xuequn Shang, Shaohua Zhang, Zhanhuai Li
{"title":"FDCluster:在多个微阵列数据集中挖掘无候选维护的频繁封闭判别双聚类","authors":"Miao Wang, Xuequn Shang, Shaohua Zhang, Zhanhuai Li","doi":"10.1109/ICDMW.2010.10","DOIUrl":null,"url":null,"abstract":"Biclustering is a methodology allowing for condition set and gene set points clustering simultaneously. Almost all the current biclustering algorithms find bicluster in one microarray dataset. In order to reduce the noise influence and find more biological biclusters, we propose an algorithm, FDCluster, to mine frequent closed discriminative bicluster in multiple microarray datasets. FDCluster uses Apriori property and several novel techniques for pruning to mine frequent closed bicluster without candidate maintenance. The experimental results show that FDCluster is more effectiveness than traditional method in either single micorarray dataset or multiple microarray datasets. We also test the biological significance using GO to show our proposed method is able to produce biologically relevant biclusters.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"FDCluster: Mining Frequent Closed Discriminative Bicluster without Candidate Maintenance in Multiple Microarray Datasets\",\"authors\":\"Miao Wang, Xuequn Shang, Shaohua Zhang, Zhanhuai Li\",\"doi\":\"10.1109/ICDMW.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biclustering is a methodology allowing for condition set and gene set points clustering simultaneously. Almost all the current biclustering algorithms find bicluster in one microarray dataset. In order to reduce the noise influence and find more biological biclusters, we propose an algorithm, FDCluster, to mine frequent closed discriminative bicluster in multiple microarray datasets. FDCluster uses Apriori property and several novel techniques for pruning to mine frequent closed bicluster without candidate maintenance. The experimental results show that FDCluster is more effectiveness than traditional method in either single micorarray dataset or multiple microarray datasets. We also test the biological significance using GO to show our proposed method is able to produce biologically relevant biclusters.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

双聚类是一种允许条件集点和基因集点同时聚类的方法。目前几乎所有的双聚类算法都是在一个微阵列数据集中找到双聚类的。为了降低噪声影响,发现更多的生物双聚类,我们提出了一种FDCluster算法,在多个微阵列数据集中挖掘频繁封闭判别双聚类。FDCluster利用Apriori属性和一些新的剪枝技术来挖掘频繁的封闭双聚类,无需候选维护。实验结果表明,无论是在单个微阵列数据集还是在多个微阵列数据集上,FDCluster都比传统方法更有效。我们还使用氧化石墨烯测试了生物学意义,以表明我们提出的方法能够产生生物学相关的双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FDCluster: Mining Frequent Closed Discriminative Bicluster without Candidate Maintenance in Multiple Microarray Datasets
Biclustering is a methodology allowing for condition set and gene set points clustering simultaneously. Almost all the current biclustering algorithms find bicluster in one microarray dataset. In order to reduce the noise influence and find more biological biclusters, we propose an algorithm, FDCluster, to mine frequent closed discriminative bicluster in multiple microarray datasets. FDCluster uses Apriori property and several novel techniques for pruning to mine frequent closed bicluster without candidate maintenance. The experimental results show that FDCluster is more effectiveness than traditional method in either single micorarray dataset or multiple microarray datasets. We also test the biological significance using GO to show our proposed method is able to produce biologically relevant biclusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1