金星原位转移和分析任务概念

N. Izenberg, V. Scott, B. Fultz
{"title":"金星原位转移和分析任务概念","authors":"N. Izenberg, V. Scott, B. Fultz","doi":"10.1109/AERO55745.2023.10115688","DOIUrl":null,"url":null,"abstract":"After Magellan 30 years ago, US Venus exploration has relied on archived data, Earth-based and flyby observations of missions bound elsewhere, and international efforts such as Venus Express (ESA) and Akatsuki (JAXA) until the selection of NASA Discovery missions VERITAS and DAVINCI and participation in ESA's EnVision. These missions will address a significant number of major science questions about the past and present of Venus. Nevertheless, many additional and crucial questions about the history of Venus, including its similarities and differences from Earth, will remain unresolved even after the success of these new missions. Significant divergences in planetary evolution of Venus and Earth require knowledge that is not obtainable by the selected suite of upcoming missions, but can be attained by an innovative approach in the next 20 years if precursor science and technology paves the way. In the same way that the Mars Exploration Rovers, Mars Science Lab, and Perseverance have provided measurements that unravel the mysteries of Mars, the Venus In Situ Transfer and Analysis mission concept (VISTA) provides an opportunity to obtain measurements that cannot be obtained by a simple, short-term mission to Venus. VISTA would provide detailed knowledge of the surface and atmosphere to better understand the origin and evolution of Venus, its geology and former habitability, and the interaction of its surface with the atmosphere. Since the surface environment of Venus is not conducive to long-term missions, we propose a long duration, sky-borne laboratory in the Venus upper atmosphere, maintained at temperatures and pressures favorable for extended laboratory measurements that shed light on the composition and history of minerals and rocks retrieved from the surface. VISTA is a concept for a flagship mission to collect samples from multiple locations on the planet surface, and from the Venus atmosphere, and deliver them to a highly-capable, long-lived aerial laboratory for detailed analysis with modern instrumentation. Characterizing the composition, structure, and isotopic ratios of these samples will answer questions of surface composition across multiple geologic provinces. These measurements will help answer questions about the fundamental branch points in the evolution of Venus. Studies of atmospheric aerosols will support models of cloud formation. The longevity of VISTA will provide further information on atmospheric circulation, and provide a platform for detecting rare seismic and volcanic events. Any in situ Venus mission faces significant technical and operational challenges. VISTA shares some challenges with past and current in situ concepts, and presents its own unique challenges (e.g. asset rendezvous, sample processing, and long-lived laboratory platform). This paper describes the architecture and trades of the VISTA mission concept for the aerial laboratory, (multiple) sampling landers, ascent vehicles, and sample retrievers.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VISTA: Venus in Situ Transfer and Analysis Mission Concept\",\"authors\":\"N. Izenberg, V. Scott, B. Fultz\",\"doi\":\"10.1109/AERO55745.2023.10115688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After Magellan 30 years ago, US Venus exploration has relied on archived data, Earth-based and flyby observations of missions bound elsewhere, and international efforts such as Venus Express (ESA) and Akatsuki (JAXA) until the selection of NASA Discovery missions VERITAS and DAVINCI and participation in ESA's EnVision. These missions will address a significant number of major science questions about the past and present of Venus. Nevertheless, many additional and crucial questions about the history of Venus, including its similarities and differences from Earth, will remain unresolved even after the success of these new missions. Significant divergences in planetary evolution of Venus and Earth require knowledge that is not obtainable by the selected suite of upcoming missions, but can be attained by an innovative approach in the next 20 years if precursor science and technology paves the way. In the same way that the Mars Exploration Rovers, Mars Science Lab, and Perseverance have provided measurements that unravel the mysteries of Mars, the Venus In Situ Transfer and Analysis mission concept (VISTA) provides an opportunity to obtain measurements that cannot be obtained by a simple, short-term mission to Venus. VISTA would provide detailed knowledge of the surface and atmosphere to better understand the origin and evolution of Venus, its geology and former habitability, and the interaction of its surface with the atmosphere. Since the surface environment of Venus is not conducive to long-term missions, we propose a long duration, sky-borne laboratory in the Venus upper atmosphere, maintained at temperatures and pressures favorable for extended laboratory measurements that shed light on the composition and history of minerals and rocks retrieved from the surface. VISTA is a concept for a flagship mission to collect samples from multiple locations on the planet surface, and from the Venus atmosphere, and deliver them to a highly-capable, long-lived aerial laboratory for detailed analysis with modern instrumentation. Characterizing the composition, structure, and isotopic ratios of these samples will answer questions of surface composition across multiple geologic provinces. These measurements will help answer questions about the fundamental branch points in the evolution of Venus. Studies of atmospheric aerosols will support models of cloud formation. The longevity of VISTA will provide further information on atmospheric circulation, and provide a platform for detecting rare seismic and volcanic events. Any in situ Venus mission faces significant technical and operational challenges. VISTA shares some challenges with past and current in situ concepts, and presents its own unique challenges (e.g. asset rendezvous, sample processing, and long-lived laboratory platform). This paper describes the architecture and trades of the VISTA mission concept for the aerial laboratory, (multiple) sampling landers, ascent vehicles, and sample retrievers.\",\"PeriodicalId\":344285,\"journal\":{\"name\":\"2023 IEEE Aerospace Conference\",\"volume\":\"452 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO55745.2023.10115688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在30年前的麦哲伦之后,美国的金星探索一直依赖于存档数据、地球上的观测和飞往其他地方的飞行观测,以及金星快车(ESA)和赤月(JAXA)等国际努力,直到选择了NASA的发现任务VERITAS和DAVINCI,并参与了ESA的EnVision。这些任务将解决大量关于金星过去和现在的重大科学问题。然而,即使在这些新任务成功之后,关于金星历史的许多其他和关键的问题,包括它与地球的相似和不同之处,仍将悬而未决。金星和地球行星演化的重大差异需要的知识是无法通过即将到来的一系列任务获得的,但如果先驱科学和技术铺平道路,可以通过未来20年的创新方法获得。就像火星探测车、火星科学实验室和毅力号提供的测量结果揭示了火星的奥秘一样,金星原位转移和分析任务概念(VISTA)提供了一个获得简单的短期金星任务无法获得的测量结果的机会。VISTA将提供有关金星表面和大气层的详细知识,以便更好地了解金星的起源和演化、它的地质和以前的可居住性,以及它的表面与大气层的相互作用。由于金星的表面环境不利于长期任务,我们建议在金星高层大气中建立一个长期的空中实验室,保持在有利于扩展实验室测量的温度和压力下,从而阐明从金星表面获取的矿物和岩石的组成和历史。VISTA是一个旗舰任务的概念,从行星表面和金星大气层的多个地点收集样本,并将它们送到一个功能强大、寿命长的空中实验室,用现代仪器进行详细分析。表征这些样品的组成、结构和同位素比率将回答跨越多个地质省的地表组成问题。这些测量将有助于回答有关金星演化过程中基本分支点的问题。对大气气溶胶的研究将支持云形成的模型。VISTA的寿命将提供关于大气环流的进一步信息,并为探测罕见的地震和火山事件提供一个平台。任何原地金星任务都面临着重大的技术和操作挑战。VISTA与过去和现在的原位概念共享一些挑战,并提出了自己独特的挑战(例如,资产集合,样品处理和长寿命的实验室平台)。本文描述了VISTA任务概念的结构和交易,包括空中实验室、(多)采样着陆器、上升飞行器和样本回收器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VISTA: Venus in Situ Transfer and Analysis Mission Concept
After Magellan 30 years ago, US Venus exploration has relied on archived data, Earth-based and flyby observations of missions bound elsewhere, and international efforts such as Venus Express (ESA) and Akatsuki (JAXA) until the selection of NASA Discovery missions VERITAS and DAVINCI and participation in ESA's EnVision. These missions will address a significant number of major science questions about the past and present of Venus. Nevertheless, many additional and crucial questions about the history of Venus, including its similarities and differences from Earth, will remain unresolved even after the success of these new missions. Significant divergences in planetary evolution of Venus and Earth require knowledge that is not obtainable by the selected suite of upcoming missions, but can be attained by an innovative approach in the next 20 years if precursor science and technology paves the way. In the same way that the Mars Exploration Rovers, Mars Science Lab, and Perseverance have provided measurements that unravel the mysteries of Mars, the Venus In Situ Transfer and Analysis mission concept (VISTA) provides an opportunity to obtain measurements that cannot be obtained by a simple, short-term mission to Venus. VISTA would provide detailed knowledge of the surface and atmosphere to better understand the origin and evolution of Venus, its geology and former habitability, and the interaction of its surface with the atmosphere. Since the surface environment of Venus is not conducive to long-term missions, we propose a long duration, sky-borne laboratory in the Venus upper atmosphere, maintained at temperatures and pressures favorable for extended laboratory measurements that shed light on the composition and history of minerals and rocks retrieved from the surface. VISTA is a concept for a flagship mission to collect samples from multiple locations on the planet surface, and from the Venus atmosphere, and deliver them to a highly-capable, long-lived aerial laboratory for detailed analysis with modern instrumentation. Characterizing the composition, structure, and isotopic ratios of these samples will answer questions of surface composition across multiple geologic provinces. These measurements will help answer questions about the fundamental branch points in the evolution of Venus. Studies of atmospheric aerosols will support models of cloud formation. The longevity of VISTA will provide further information on atmospheric circulation, and provide a platform for detecting rare seismic and volcanic events. Any in situ Venus mission faces significant technical and operational challenges. VISTA shares some challenges with past and current in situ concepts, and presents its own unique challenges (e.g. asset rendezvous, sample processing, and long-lived laboratory platform). This paper describes the architecture and trades of the VISTA mission concept for the aerial laboratory, (multiple) sampling landers, ascent vehicles, and sample retrievers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Mission for Education and Multimedia Engagement: Breaking the Barriers to Satellite Education TID Testing of COTS-based, Two-Phase, Point-of-Load Converters for Aerospace Applications Point-Source Target Detection and Localization in Single-Frame Infrared Imagery Comparative Analysis of Different Profiles of Riblets on an Airfoil using Large Eddy Simulations A Receiver-Independent GNSS Smart Antenna for Simultaneous Jamming and Spoofing Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1