在线贝叶斯自适应SCHMM参数用于语音识别

Qiang Huo, Chorkin Chan
{"title":"在线贝叶斯自适应SCHMM参数用于语音识别","authors":"Qiang Huo, Chorkin Chan","doi":"10.1109/ICASSP.1995.479792","DOIUrl":null,"url":null,"abstract":"On-line adaptation of semi-continuous (or tied mixture) hidden Markov model (SCHMM) is studied. A theoretical formulation of the segmental quasi-Bayes learning of the mixture coefficients in SCHMM for speech recognition is presented. The practical issues related to the use of this algorithm for on-line speaker adaptation are addressed. A pragmatic on-line adaptation approach to combine the long-term adaptation of the mixture coefficients and the short-term adaptation of the mean vectors of the Gaussian mixture components are also proposed. The viability of these techniques are confirmed in a series of comparative experiments using a 26-word English alphabet vocabulary.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On-line Bayes adaptation of SCHMM parameters for speech recognition\",\"authors\":\"Qiang Huo, Chorkin Chan\",\"doi\":\"10.1109/ICASSP.1995.479792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line adaptation of semi-continuous (or tied mixture) hidden Markov model (SCHMM) is studied. A theoretical formulation of the segmental quasi-Bayes learning of the mixture coefficients in SCHMM for speech recognition is presented. The practical issues related to the use of this algorithm for on-line speaker adaptation are addressed. A pragmatic on-line adaptation approach to combine the long-term adaptation of the mixture coefficients and the short-term adaptation of the mean vectors of the Gaussian mixture components are also proposed. The viability of these techniques are confirmed in a series of comparative experiments using a 26-word English alphabet vocabulary.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"453 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.479792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了半连续(或捆绑混合)隐马尔可夫模型的在线自适应问题。提出了一种用于语音识别的SCHMM混合系数分段拟贝叶斯学习的理论公式。讨论了使用该算法进行在线说话人自适应的实际问题。提出了一种实用的混合系数长期自适应和高斯混合分量平均向量短期自适应相结合的在线自适应方法。这些方法的可行性在使用26个英语字母词汇的一系列对比实验中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line Bayes adaptation of SCHMM parameters for speech recognition
On-line adaptation of semi-continuous (or tied mixture) hidden Markov model (SCHMM) is studied. A theoretical formulation of the segmental quasi-Bayes learning of the mixture coefficients in SCHMM for speech recognition is presented. The practical issues related to the use of this algorithm for on-line speaker adaptation are addressed. A pragmatic on-line adaptation approach to combine the long-term adaptation of the mixture coefficients and the short-term adaptation of the mean vectors of the Gaussian mixture components are also proposed. The viability of these techniques are confirmed in a series of comparative experiments using a 26-word English alphabet vocabulary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1