基于三阶相关工具的纹理分类

C. Coroyer, D. Declercq, P. Duvaut
{"title":"基于三阶相关工具的纹理分类","authors":"C. Coroyer, D. Declercq, P. Duvaut","doi":"10.1109/HOST.1997.613510","DOIUrl":null,"url":null,"abstract":"This study presents a new method for textures classification based on higher order statistics (HOS). We propose the use of third order correlation tools for texture analysis. We compare the performance of three different tools: the bicorrelation in the spatial domain, the bispectrum in the frequency domain and the bicorspectrum which is a spatial/frequency representation in that case. We test classification on representative textures of Brodatz album.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Texture classification using third order correlation tools\",\"authors\":\"C. Coroyer, D. Declercq, P. Duvaut\",\"doi\":\"10.1109/HOST.1997.613510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a new method for textures classification based on higher order statistics (HOS). We propose the use of third order correlation tools for texture analysis. We compare the performance of three different tools: the bicorrelation in the spatial domain, the bispectrum in the frequency domain and the bicorspectrum which is a spatial/frequency representation in that case. We test classification on representative textures of Brodatz album.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于高阶统计量的纹理分类新方法。我们建议使用三阶相关工具进行纹理分析。我们比较了三种不同工具的性能:空间域的双相关,频率域的双谱和双谱,在这种情况下是空间/频率表示。我们对Brodatz专辑的代表性织体进行了分类测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture classification using third order correlation tools
This study presents a new method for textures classification based on higher order statistics (HOS). We propose the use of third order correlation tools for texture analysis. We compare the performance of three different tools: the bicorrelation in the spatial domain, the bispectrum in the frequency domain and the bicorspectrum which is a spatial/frequency representation in that case. We test classification on representative textures of Brodatz album.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1