基于置信度指标的块线性回归分类决策融合

Yi-fei Xu, He-lei Wu
{"title":"基于置信度指标的块线性回归分类决策融合","authors":"Yi-fei Xu, He-lei Wu","doi":"10.1109/ACPR.2011.6166708","DOIUrl":null,"url":null,"abstract":"We consider the problem of recognizing human faces with varying expression and illumination, and a novel confidence index based block linear regression classification method is proposed. Our approach divides images into blocks, and each block is identified using the linear regression classifier separately. We develop a confidence index model to measure the recognition confidence of each block, and the final decision is achieved by aggregating individual results with the designed Bayesian decision fusion algorithm. The performances of our approach and conventional algorithms are evaluated under conditions of varying expression and illumination using benchmark databases, improvements demonstrate the proposed approach is robustness to both expression and illumination variations.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decision fusion for block linear regression classification based on confidence index\",\"authors\":\"Yi-fei Xu, He-lei Wu\",\"doi\":\"10.1109/ACPR.2011.6166708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of recognizing human faces with varying expression and illumination, and a novel confidence index based block linear regression classification method is proposed. Our approach divides images into blocks, and each block is identified using the linear regression classifier separately. We develop a confidence index model to measure the recognition confidence of each block, and the final decision is achieved by aggregating individual results with the designed Bayesian decision fusion algorithm. The performances of our approach and conventional algorithms are evaluated under conditions of varying expression and illumination using benchmark databases, improvements demonstrate the proposed approach is robustness to both expression and illumination variations.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对不同表情和光照的人脸识别问题,提出了一种基于置信度指数的块线性回归分类方法。我们的方法将图像分成块,每个块分别使用线性回归分类器进行识别。我们建立了一个置信度指数模型来衡量每个块的识别置信度,并利用所设计的贝叶斯决策融合算法对单个结果进行汇总,从而得到最终的决策。在不同的表达和光照条件下,使用基准数据库对我们的方法和传统算法的性能进行了评估,改进表明我们的方法对表达和光照变化都具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision fusion for block linear regression classification based on confidence index
We consider the problem of recognizing human faces with varying expression and illumination, and a novel confidence index based block linear regression classification method is proposed. Our approach divides images into blocks, and each block is identified using the linear regression classifier separately. We develop a confidence index model to measure the recognition confidence of each block, and the final decision is achieved by aggregating individual results with the designed Bayesian decision fusion algorithm. The performances of our approach and conventional algorithms are evaluated under conditions of varying expression and illumination using benchmark databases, improvements demonstrate the proposed approach is robustness to both expression and illumination variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1