AppleSeed:基于意图的多域基础设施管理,通过几次学习

Jieyu Lin, Kristina Dzeparoska, A. Tizghadam, A. Leon-Garcia
{"title":"AppleSeed:基于意图的多域基础设施管理,通过几次学习","authors":"Jieyu Lin, Kristina Dzeparoska, A. Tizghadam, A. Leon-Garcia","doi":"10.1109/NetSoft57336.2023.10175410","DOIUrl":null,"url":null,"abstract":"Managing complex infrastructures in multi-domain settings is time-consuming and error-prone. Intent-based infrastructure management is a means to simplify management by allowing users to specify intents, i.e., high-level statements in natural language, that are automatically realized by the system. However, providing intent-based multi-domain infrastructure management poses a number of challenges: 1) intent translation; 2) plan execution and parallelization; 3) incompatible cross-domain abstractions. To tackle these challenges, we propose AppleSeed, an intent-based infrastructure management system that enables an end-to-end intent-to-deployment pipeline. AppleSeed uses few-shot learning for training a Large Language Model (LLM) to translate intents into intermediate programs, which are processed by a just-in-time compiler and a materialization module to automatically generate parallelizable, domain-specific executable programs. We evaluate the system in two use cases: Deep Packet Inspection (DPI); and machine learning training and inferencing. Our system achieves efficient intent translation into an execution plan with an average 22.3x lines of code to intent word ratio. It also speeds up the execution of the management plan by 1.7-2.6 times with our JIT compilation for parallelized execution compared to sequential execution.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AppleSeed: Intent-Based Multi-Domain Infrastructure Management via Few-Shot Learning\",\"authors\":\"Jieyu Lin, Kristina Dzeparoska, A. Tizghadam, A. Leon-Garcia\",\"doi\":\"10.1109/NetSoft57336.2023.10175410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing complex infrastructures in multi-domain settings is time-consuming and error-prone. Intent-based infrastructure management is a means to simplify management by allowing users to specify intents, i.e., high-level statements in natural language, that are automatically realized by the system. However, providing intent-based multi-domain infrastructure management poses a number of challenges: 1) intent translation; 2) plan execution and parallelization; 3) incompatible cross-domain abstractions. To tackle these challenges, we propose AppleSeed, an intent-based infrastructure management system that enables an end-to-end intent-to-deployment pipeline. AppleSeed uses few-shot learning for training a Large Language Model (LLM) to translate intents into intermediate programs, which are processed by a just-in-time compiler and a materialization module to automatically generate parallelizable, domain-specific executable programs. We evaluate the system in two use cases: Deep Packet Inspection (DPI); and machine learning training and inferencing. Our system achieves efficient intent translation into an execution plan with an average 22.3x lines of code to intent word ratio. It also speeds up the execution of the management plan by 1.7-2.6 times with our JIT compilation for parallelized execution compared to sequential execution.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多域设置中管理复杂的基础设施既耗时又容易出错。基于意图的基础架构管理是一种简化管理的方法,允许用户指定意图,即用自然语言指定高级语句,由系统自动实现。然而,提供基于意图的多域基础设施管理带来了许多挑战:1)意图转换;2)计划执行和并行化;3)不兼容的跨领域抽象。为了应对这些挑战,我们提出了AppleSeed,这是一个基于意图的基础设施管理系统,可以实现端到端的意图到部署管道。AppleSeed使用少量学习来训练一个大型语言模型(LLM),将意图翻译成中间程序,中间程序由即时编译器和具体化模块处理,自动生成可并行化的、特定领域的可执行程序。我们在两个用例中评估系统:深度包检测(DPI);机器学习训练和推理。我们的系统实现了高效的意图转换为执行计划,平均代码行数与意图字数之比为22.3倍。与顺序执行相比,使用并行执行的JIT编译还可以将管理计划的执行速度提高1.7-2.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AppleSeed: Intent-Based Multi-Domain Infrastructure Management via Few-Shot Learning
Managing complex infrastructures in multi-domain settings is time-consuming and error-prone. Intent-based infrastructure management is a means to simplify management by allowing users to specify intents, i.e., high-level statements in natural language, that are automatically realized by the system. However, providing intent-based multi-domain infrastructure management poses a number of challenges: 1) intent translation; 2) plan execution and parallelization; 3) incompatible cross-domain abstractions. To tackle these challenges, we propose AppleSeed, an intent-based infrastructure management system that enables an end-to-end intent-to-deployment pipeline. AppleSeed uses few-shot learning for training a Large Language Model (LLM) to translate intents into intermediate programs, which are processed by a just-in-time compiler and a materialization module to automatically generate parallelizable, domain-specific executable programs. We evaluate the system in two use cases: Deep Packet Inspection (DPI); and machine learning training and inferencing. Our system achieves efficient intent translation into an execution plan with an average 22.3x lines of code to intent word ratio. It also speeds up the execution of the management plan by 1.7-2.6 times with our JIT compilation for parallelized execution compared to sequential execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1