一种新的基于奇异值分解的子空间跟踪算法

A. Kavcic, Bin Yang
{"title":"一种新的基于奇异值分解的子空间跟踪算法","authors":"A. Kavcic, Bin Yang","doi":"10.1109/ICASSP.1994.389774","DOIUrl":null,"url":null,"abstract":"A new algorithm for signal subspace tracking is presented. It is based on an approximated singular value decomposition using interlaced QR-updating and Jacobi plane rotations. By forcing the noise subspace to be spherical, the computational complexity of the algorithm is brought down to O(nr), where n is the problem dimension and r is the desired number of signal components. The algorithm lends itself for a very efficient systolic array implementation, resulting in a throughput of O(n/sup 0/). Simulations show that the frequency tracking capabilities of the new method are at least as good as those of the computationally much more expensive exact singular value decomposition.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A new efficient subspace tracking algorithm based on singular value decomposition\",\"authors\":\"A. Kavcic, Bin Yang\",\"doi\":\"10.1109/ICASSP.1994.389774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm for signal subspace tracking is presented. It is based on an approximated singular value decomposition using interlaced QR-updating and Jacobi plane rotations. By forcing the noise subspace to be spherical, the computational complexity of the algorithm is brought down to O(nr), where n is the problem dimension and r is the desired number of signal components. The algorithm lends itself for a very efficient systolic array implementation, resulting in a throughput of O(n/sup 0/). Simulations show that the frequency tracking capabilities of the new method are at least as good as those of the computationally much more expensive exact singular value decomposition.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种新的信号子空间跟踪算法。它是基于一个近似的奇异值分解,使用交错qr更新和雅可比平面旋转。通过将噪声子空间强制为球形,将算法的计算复杂度降至O(nr),其中n为问题维数,r为期望的信号分量数。该算法适合于非常有效的收缩数组实现,导致吞吐量为0 (n/sup 0/)。仿真结果表明,新方法的频率跟踪能力至少与计算成本高得多的精确奇异值分解方法相当
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new efficient subspace tracking algorithm based on singular value decomposition
A new algorithm for signal subspace tracking is presented. It is based on an approximated singular value decomposition using interlaced QR-updating and Jacobi plane rotations. By forcing the noise subspace to be spherical, the computational complexity of the algorithm is brought down to O(nr), where n is the problem dimension and r is the desired number of signal components. The algorithm lends itself for a very efficient systolic array implementation, resulting in a throughput of O(n/sup 0/). Simulations show that the frequency tracking capabilities of the new method are at least as good as those of the computationally much more expensive exact singular value decomposition.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1