{"title":"时变参数的递推估计最大化算法在多目标跟踪中的应用","authors":"L. Frenkel, M. Feder","doi":"10.1109/ICASSP.1995.478481","DOIUrl":null,"url":null,"abstract":"We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recursive estimate-maximize (EM) algorithms for time varying parameters with applications to multiple target tracking\",\"authors\":\"L. Frenkel, M. Feder\",\"doi\":\"10.1109/ICASSP.1995.478481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.478481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.478481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recursive estimate-maximize (EM) algorithms for time varying parameters with applications to multiple target tracking
We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.