P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, S. M. Bilal, A. Nespola, L. Bertignono, S. Abrate, F. Forghieri
{"title":"符号率优化非线性缓解的理论与实验评估","authors":"P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, S. M. Bilal, A. Nespola, L. Bertignono, S. Abrate, F. Forghieri","doi":"10.1109/TIWDC.2015.7323330","DOIUrl":null,"url":null,"abstract":"We investigated the reach increase obtained through non-linearity mitigation by means of transmission symbol rate optimization (SRO). First, we did this theoretically and simulatively. We found that for PM-QPSK systems at full-C-band the reach increase may be substantial, on the order of 10%-25%, with optimum symbol rates on the order of 2-to-6 GBaud. We extended the investigation to PM-16QAM, where we found a qualitatively similar effect, although the potential reach increase is typically only about half that of PM-QPSK. We then set up an experiment to obtain confrmation of the theoretical and simulative predictions. We demonstrated a reach increase of 11% in a 19-channel, 128 Gbit/s per channel, PM-QPSK experiment, when going from single-carrier to multi-subcarrier (up to 16 subcarriers per channel) transmission. The experiment reached 14,100 km over PSCF, with 110 km spans and EDFA-only amplifcation. The results matched well the EGN model predictions.","PeriodicalId":126687,"journal":{"name":"2015 Tyrrhenian International Workshop on Digital Communications (TIWDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical and experimental assessment of nonlinearity mitigation through symbol rate optimization\",\"authors\":\"P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, S. M. Bilal, A. Nespola, L. Bertignono, S. Abrate, F. Forghieri\",\"doi\":\"10.1109/TIWDC.2015.7323330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the reach increase obtained through non-linearity mitigation by means of transmission symbol rate optimization (SRO). First, we did this theoretically and simulatively. We found that for PM-QPSK systems at full-C-band the reach increase may be substantial, on the order of 10%-25%, with optimum symbol rates on the order of 2-to-6 GBaud. We extended the investigation to PM-16QAM, where we found a qualitatively similar effect, although the potential reach increase is typically only about half that of PM-QPSK. We then set up an experiment to obtain confrmation of the theoretical and simulative predictions. We demonstrated a reach increase of 11% in a 19-channel, 128 Gbit/s per channel, PM-QPSK experiment, when going from single-carrier to multi-subcarrier (up to 16 subcarriers per channel) transmission. The experiment reached 14,100 km over PSCF, with 110 km spans and EDFA-only amplifcation. The results matched well the EGN model predictions.\",\"PeriodicalId\":126687,\"journal\":{\"name\":\"2015 Tyrrhenian International Workshop on Digital Communications (TIWDC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tyrrhenian International Workshop on Digital Communications (TIWDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIWDC.2015.7323330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tyrrhenian International Workshop on Digital Communications (TIWDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIWDC.2015.7323330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical and experimental assessment of nonlinearity mitigation through symbol rate optimization
We investigated the reach increase obtained through non-linearity mitigation by means of transmission symbol rate optimization (SRO). First, we did this theoretically and simulatively. We found that for PM-QPSK systems at full-C-band the reach increase may be substantial, on the order of 10%-25%, with optimum symbol rates on the order of 2-to-6 GBaud. We extended the investigation to PM-16QAM, where we found a qualitatively similar effect, although the potential reach increase is typically only about half that of PM-QPSK. We then set up an experiment to obtain confrmation of the theoretical and simulative predictions. We demonstrated a reach increase of 11% in a 19-channel, 128 Gbit/s per channel, PM-QPSK experiment, when going from single-carrier to multi-subcarrier (up to 16 subcarriers per channel) transmission. The experiment reached 14,100 km over PSCF, with 110 km spans and EDFA-only amplifcation. The results matched well the EGN model predictions.