2. 一种用于SDEs的自适应随机位多电平算法

M. Giles, M. Hefter, Lukas Mayer, K. Ritter
{"title":"2. 一种用于SDEs的自适应随机位多电平算法","authors":"M. Giles, M. Hefter, Lukas Mayer, K. Ritter","doi":"10.1515/9783110635461-002","DOIUrl":null,"url":null,"abstract":"We study the approximation of expectations $\\operatorname{E}(f(X))$ for solutions $X$ of stochastic differential equations and functionals $f$ on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the L\\'evy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.","PeriodicalId":443134,"journal":{"name":"Multivariate Algorithms and Information-Based Complexity","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2. An adaptive random bit multilevel algorithm for SDEs\",\"authors\":\"M. Giles, M. Hefter, Lukas Mayer, K. Ritter\",\"doi\":\"10.1515/9783110635461-002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the approximation of expectations $\\\\operatorname{E}(f(X))$ for solutions $X$ of stochastic differential equations and functionals $f$ on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the L\\\\'evy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.\",\"PeriodicalId\":443134,\"journal\":{\"name\":\"Multivariate Algorithms and Information-Based Complexity\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Algorithms and Information-Based Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110635461-002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Algorithms and Information-Based Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110635461-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了随机微分方程解$X$的期望值$\operatorname{E}(f(X))$和函数解$f$在路径空间上的期望值$\operatorname{E}(f(X))$的逼近问题,该算法只使用随机位而不使用随机数。基于欧拉格式、布朗运动的L\ evy-Ciesielski表示和标准正态分布的渐近最优随机位逼近,构造了一种自适应随机位多电平算法。在几何布朗运动、Ornstein-Uhlenbeck过程和Cox-Ingersoll-Ross过程中,将该算法与自适应经典多层欧拉算法进行了数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2. An adaptive random bit multilevel algorithm for SDEs
We study the approximation of expectations $\operatorname{E}(f(X))$ for solutions $X$ of stochastic differential equations and functionals $f$ on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the L\'evy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
6. ε-Superposition and truncation dimensions, and multivariate method for∞-variate linear problems 3. RBF-based penalized least-squares approximation of noisy scattered data on the sphere 1. The control variate integration algorithm for multivariate functions defined at scattered data points Frontmatter 4. On the power of random information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1