Hendrik Joost Van Ginkel, Mattia Orvietani, J. Romijn, G. Q. Zhang, S. Vollebregt
{"title":"纳米氧化锌打印用于紫外传感器制造","authors":"Hendrik Joost Van Ginkel, Mattia Orvietani, J. Romijn, G. Q. Zhang, S. Vollebregt","doi":"10.1109/SENSORS52175.2022.9967053","DOIUrl":null,"url":null,"abstract":"In this work, a novel microfabrication-compatible production process is demonstrated and used to fabricate UV photoresistors made from ZnO nanoparticles. It comprises a simple room-temperature production method for synthesizing and direct-writing nanoparticles. The method can be used on a wide range of surfaces and print a wide range of materials. Here, it is used to synthesize a ZnO photoresistor for the first time. The sensor shows a two orders of magnitude lower resistance under UV-C exposure compared to darkness. The low cost and simplicity of this synthesis method enables cheap integration of UV-C sensors for human exposure monitoring or UV-output monitoring of light sources.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnO Nanoparticle Printing for UV Sensor Fabrication\",\"authors\":\"Hendrik Joost Van Ginkel, Mattia Orvietani, J. Romijn, G. Q. Zhang, S. Vollebregt\",\"doi\":\"10.1109/SENSORS52175.2022.9967053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel microfabrication-compatible production process is demonstrated and used to fabricate UV photoresistors made from ZnO nanoparticles. It comprises a simple room-temperature production method for synthesizing and direct-writing nanoparticles. The method can be used on a wide range of surfaces and print a wide range of materials. Here, it is used to synthesize a ZnO photoresistor for the first time. The sensor shows a two orders of magnitude lower resistance under UV-C exposure compared to darkness. The low cost and simplicity of this synthesis method enables cheap integration of UV-C sensors for human exposure monitoring or UV-output monitoring of light sources.\",\"PeriodicalId\":120357,\"journal\":{\"name\":\"2022 IEEE Sensors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS52175.2022.9967053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ZnO Nanoparticle Printing for UV Sensor Fabrication
In this work, a novel microfabrication-compatible production process is demonstrated and used to fabricate UV photoresistors made from ZnO nanoparticles. It comprises a simple room-temperature production method for synthesizing and direct-writing nanoparticles. The method can be used on a wide range of surfaces and print a wide range of materials. Here, it is used to synthesize a ZnO photoresistor for the first time. The sensor shows a two orders of magnitude lower resistance under UV-C exposure compared to darkness. The low cost and simplicity of this synthesis method enables cheap integration of UV-C sensors for human exposure monitoring or UV-output monitoring of light sources.