三维局部相位理论在血管分割中的应用

Po Wang, C. Kelly, M. Brady
{"title":"三维局部相位理论在血管分割中的应用","authors":"Po Wang, C. Kelly, M. Brady","doi":"10.1109/ISBI.2009.5193267","DOIUrl":null,"url":null,"abstract":"The aim of this work is to segment, and quantify, the vasculature of tumours, based on fluorescent microscope 3D images. Such images have poor contrast and the vascular features vary substantially within a 3D volume. In this paper, we introduce a method to estimate local phase in 3D images based on the monogenic signal theory, and illustrate its performance on our vasculature images.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of 3D local phase theory in vessel segmentation\",\"authors\":\"Po Wang, C. Kelly, M. Brady\",\"doi\":\"10.1109/ISBI.2009.5193267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to segment, and quantify, the vasculature of tumours, based on fluorescent microscope 3D images. Such images have poor contrast and the vascular features vary substantially within a 3D volume. In this paper, we introduce a method to estimate local phase in 3D images based on the monogenic signal theory, and illustrate its performance on our vasculature images.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

这项工作的目的是分割,并量化,肿瘤的血管系统,基于荧光显微镜的3D图像。这样的图像对比度差,血管特征在三维体积内变化很大。本文介绍了一种基于单基因信号理论的三维图像局部相位估计方法,并举例说明了该方法在血管图像上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of 3D local phase theory in vessel segmentation
The aim of this work is to segment, and quantify, the vasculature of tumours, based on fluorescent microscope 3D images. Such images have poor contrast and the vascular features vary substantially within a 3D volume. In this paper, we introduce a method to estimate local phase in 3D images based on the monogenic signal theory, and illustrate its performance on our vasculature images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1