Lu Ou, Alejandro Andrade, R. Alberto, Gitte van Helden, A. Bakker
{"title":"利用基于集群的状态切换动态模型来理解具身数学学习","authors":"Lu Ou, Alejandro Andrade, R. Alberto, Gitte van Helden, A. Bakker","doi":"10.1145/3375462.3375513","DOIUrl":null,"url":null,"abstract":"Embodied learning and the design of embodied learning platforms have gained popularity in recent years due to the increasing availability of sensing technologies. In our study, we made use of the Mathematical Imagery Trainer for Proportion (MIT-P) that uses a touchscreen tablet to help students explore the concept of mathematical proportion. The use of sensing technologies provides an unprecedented amount of high-frequency data on students' behaviors. We investigated a statistical model called mixture Regime-Switching Hidden Logistic Transition Process (mixRHLP) and fit it to the students' hand motion data. Simultaneously, the model finds characteristic regimes and assigns students to clusters of regime transitions. To understand the nature of these regimes and clusters, we explore some properties in students' and tutor's verbalization associated with these different phases.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using a cluster-based regime-switching dynamic model to understand embodied mathematical learning\",\"authors\":\"Lu Ou, Alejandro Andrade, R. Alberto, Gitte van Helden, A. Bakker\",\"doi\":\"10.1145/3375462.3375513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embodied learning and the design of embodied learning platforms have gained popularity in recent years due to the increasing availability of sensing technologies. In our study, we made use of the Mathematical Imagery Trainer for Proportion (MIT-P) that uses a touchscreen tablet to help students explore the concept of mathematical proportion. The use of sensing technologies provides an unprecedented amount of high-frequency data on students' behaviors. We investigated a statistical model called mixture Regime-Switching Hidden Logistic Transition Process (mixRHLP) and fit it to the students' hand motion data. Simultaneously, the model finds characteristic regimes and assigns students to clusters of regime transitions. To understand the nature of these regimes and clusters, we explore some properties in students' and tutor's verbalization associated with these different phases.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using a cluster-based regime-switching dynamic model to understand embodied mathematical learning
Embodied learning and the design of embodied learning platforms have gained popularity in recent years due to the increasing availability of sensing technologies. In our study, we made use of the Mathematical Imagery Trainer for Proportion (MIT-P) that uses a touchscreen tablet to help students explore the concept of mathematical proportion. The use of sensing technologies provides an unprecedented amount of high-frequency data on students' behaviors. We investigated a statistical model called mixture Regime-Switching Hidden Logistic Transition Process (mixRHLP) and fit it to the students' hand motion data. Simultaneously, the model finds characteristic regimes and assigns students to clusters of regime transitions. To understand the nature of these regimes and clusters, we explore some properties in students' and tutor's verbalization associated with these different phases.