最大分集问题。多目标方法

Katherine Dahiana Vera Escobar, Fabio López-Pires, B. Barán, Fernando Sandoya
{"title":"最大分集问题。多目标方法","authors":"Katherine Dahiana Vera Escobar, Fabio López-Pires, B. Barán, Fernando Sandoya","doi":"10.19153/CLEIEJ.21.2.2","DOIUrl":null,"url":null,"abstract":"The Maximum Diversity (MD) problem is the process of selecting a subset of elements where the diversity among selected elements is maximized. Several diversity measures were already studied in the literature, optimizing the problem considered in a pure mono-objective approach. This work presents for the first time multi-objective approaches for the MD problem, considering the simultaneous optimization of the following five diversity measures: (i) Max-Sum, (ii) Max-Min, (iii) Max-MinSum, (iv) Min-Diff and (v) Min-P-center. Two different optimization models are proposed: (i) Multi-Objective Maximum Diversity (MMD) model, where the number of elements to be selected is defined a-priori, and (ii) Multi-Objective Maximum Average Diversity (MMAD) model, where the number of elements to be selected is also a decision variable. To solve the formulated problems, a Multi-Objective Evolutionary Algorithm (MOEA) is presented. Experimental results demonstrate that the proposed MOEA found good quality solutions, i.e. between 98.85% and 100% of the optimal Pareto front when considering the hypervolume for comparison purposes.","PeriodicalId":418941,"journal":{"name":"CLEI Electron. J.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum Diversity Problem. A Multi-Objective Approach\",\"authors\":\"Katherine Dahiana Vera Escobar, Fabio López-Pires, B. Barán, Fernando Sandoya\",\"doi\":\"10.19153/CLEIEJ.21.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Maximum Diversity (MD) problem is the process of selecting a subset of elements where the diversity among selected elements is maximized. Several diversity measures were already studied in the literature, optimizing the problem considered in a pure mono-objective approach. This work presents for the first time multi-objective approaches for the MD problem, considering the simultaneous optimization of the following five diversity measures: (i) Max-Sum, (ii) Max-Min, (iii) Max-MinSum, (iv) Min-Diff and (v) Min-P-center. Two different optimization models are proposed: (i) Multi-Objective Maximum Diversity (MMD) model, where the number of elements to be selected is defined a-priori, and (ii) Multi-Objective Maximum Average Diversity (MMAD) model, where the number of elements to be selected is also a decision variable. To solve the formulated problems, a Multi-Objective Evolutionary Algorithm (MOEA) is presented. Experimental results demonstrate that the proposed MOEA found good quality solutions, i.e. between 98.85% and 100% of the optimal Pareto front when considering the hypervolume for comparison purposes.\",\"PeriodicalId\":418941,\"journal\":{\"name\":\"CLEI Electron. J.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEI Electron. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19153/CLEIEJ.21.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEI Electron. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19153/CLEIEJ.21.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最大多样性(MD)问题是选择一个元素子集的过程,其中所选元素之间的多样性最大化。文献中已经研究了几种多样性措施,优化了纯单目标方法中考虑的问题。这项工作首次提出了MD问题的多目标方法,考虑了以下五个多样性度量的同时优化:(i) Max-Sum, (ii) Max-Min, (iii) Max-MinSum, (iv) Min-Diff和(v) Min-P-center。提出了两种不同的优化模型:(i)多目标最大多样性(MMD)模型,其中需要选择的元素数量是先验定义的;(ii)多目标最大平均多样性(MMAD)模型,其中需要选择的元素数量也是一个决策变量。为了解决上述问题,提出了一种多目标进化算法(MOEA)。实验结果表明,当考虑hypervolume进行比较时,所提出的MOEA找到了良好的质量解,即在最优Pareto front的98.85%到100%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Diversity Problem. A Multi-Objective Approach
The Maximum Diversity (MD) problem is the process of selecting a subset of elements where the diversity among selected elements is maximized. Several diversity measures were already studied in the literature, optimizing the problem considered in a pure mono-objective approach. This work presents for the first time multi-objective approaches for the MD problem, considering the simultaneous optimization of the following five diversity measures: (i) Max-Sum, (ii) Max-Min, (iii) Max-MinSum, (iv) Min-Diff and (v) Min-P-center. Two different optimization models are proposed: (i) Multi-Objective Maximum Diversity (MMD) model, where the number of elements to be selected is defined a-priori, and (ii) Multi-Objective Maximum Average Diversity (MMAD) model, where the number of elements to be selected is also a decision variable. To solve the formulated problems, a Multi-Objective Evolutionary Algorithm (MOEA) is presented. Experimental results demonstrate that the proposed MOEA found good quality solutions, i.e. between 98.85% and 100% of the optimal Pareto front when considering the hypervolume for comparison purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cluster-based LSTM models to improve Dengue cases forecast Medium Access Control Techniques for Massive Machine-Type Communications in Cellular IoT Networks 2D Simplified Wildfire Spreading Model in Python: From NumPy to CuPy Preface to the CLTM-CLTD 2022 Special Issue On the specification and verification of the PCR parallel programming pattern in TLA+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1