{"title":"使用加速鲁棒特征增强静态生物特征签名验证","authors":"R. Guest, O. Miguel-Hurtado","doi":"10.1109/CCST.2012.6393561","DOIUrl":null,"url":null,"abstract":"Automatic biometric static signature verification performs a comparison between signature images (or preformed templates) to verify authenticity. Although widely recognised that performance enhancement can be achieved when using dynamic features, which use temporal/ constructional information, alongside static features, this scenario requires the capture of signatures using specialist sample equipment such a tablet device. The vast majority of (legacy) signatures across a range of important domains, including banking, legal and forensic applications, are in a static format. In this paper we use the Speeded-Up Robust Features (SURF) image registration technique in a novel application to static signature image matching. We use genuine and skilled forgery signatures from the GPDS960 dataset as test data and across a range of enrolment and SURF point distance configurations. The best performance from our method was 11.5% equal error rate by employing a product distance combination of 5 enrolment templates using the lowest 50% of returned registration-point distances. This encouraging result is in line with the current state-of-the-art performance.","PeriodicalId":405531,"journal":{"name":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhancing static biometric signature verification using Speeded-Up Robust Features\",\"authors\":\"R. Guest, O. Miguel-Hurtado\",\"doi\":\"10.1109/CCST.2012.6393561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic biometric static signature verification performs a comparison between signature images (or preformed templates) to verify authenticity. Although widely recognised that performance enhancement can be achieved when using dynamic features, which use temporal/ constructional information, alongside static features, this scenario requires the capture of signatures using specialist sample equipment such a tablet device. The vast majority of (legacy) signatures across a range of important domains, including banking, legal and forensic applications, are in a static format. In this paper we use the Speeded-Up Robust Features (SURF) image registration technique in a novel application to static signature image matching. We use genuine and skilled forgery signatures from the GPDS960 dataset as test data and across a range of enrolment and SURF point distance configurations. The best performance from our method was 11.5% equal error rate by employing a product distance combination of 5 enrolment templates using the lowest 50% of returned registration-point distances. This encouraging result is in line with the current state-of-the-art performance.\",\"PeriodicalId\":405531,\"journal\":{\"name\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2012.6393561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2012.6393561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing static biometric signature verification using Speeded-Up Robust Features
Automatic biometric static signature verification performs a comparison between signature images (or preformed templates) to verify authenticity. Although widely recognised that performance enhancement can be achieved when using dynamic features, which use temporal/ constructional information, alongside static features, this scenario requires the capture of signatures using specialist sample equipment such a tablet device. The vast majority of (legacy) signatures across a range of important domains, including banking, legal and forensic applications, are in a static format. In this paper we use the Speeded-Up Robust Features (SURF) image registration technique in a novel application to static signature image matching. We use genuine and skilled forgery signatures from the GPDS960 dataset as test data and across a range of enrolment and SURF point distance configurations. The best performance from our method was 11.5% equal error rate by employing a product distance combination of 5 enrolment templates using the lowest 50% of returned registration-point distances. This encouraging result is in line with the current state-of-the-art performance.