分布式和流模型的最优主成分分析

Christos Boutsidis, David P. Woodruff, Peilin Zhong
{"title":"分布式和流模型的最优主成分分析","authors":"Christos Boutsidis, David P. Woodruff, Peilin Zhong","doi":"10.1145/2897518.2897646","DOIUrl":null,"url":null,"abstract":"This paper studies the Principal Component Analysis (PCA) problem in the distributed and streaming models of computation. Given a matrix A ∈ Rm×n, a rank parameter k<rank(A), and an accuracy parameter 0<ε<1, we want to output an m×k orthonormal matrix U for which ||A-UUTA||2F≤(1+ε)||A-Ak||2F where Ak∈Rm×n is the best rank-k approximation to A. Our contributions are summarized as follows: 1. In the arbitrary partition distributed model of Kannan et al. (COLT 2014), each of s machines holds a matrix Ai and A=ΣAi. Each machine should output U. Kannan et al. achieve O(skm/ε)+poly(sk/ε) words (of O(log(nm)) bits) communication. We obtain the improved bound of O(skm)+poly(sk/ε) words, and show an optimal (up to low order terms) Ω(skm) lower bound. This resolves an open question in the literature. A poly(ε-1) dependence is known to be required, but we separate this dependence from m. 2. In a more specific distributed model where each server receives a subset of columns of A, we bypass the above lower bound when A is φ-sparse in each column. Here we obtain an O(skφ/ε)+poly(sk/ε) word protocol. Our communication is independent of the matrix dimensions, and achieves the guarantee that each server, in addition to outputting U, outputs a subset of O(k/ε) columns of A containing a U in its span (that is, for the first time, we solve distributed column subset selection). Additionally, we show a matching Ω(skφ/ε) lower bound for distributed column subset selection. Achieving our communication bound when A is sparse in general but not sparse in each column, is impossible. 3. In the streaming model of computation, in which the columns of the matrix A arrive one at a time, an algorithm of Liberty (KDD, 2013) with an improved analysis by Ghashami and Phillips (SODA, 2014) achieves O(km/ε) \"real numbers\" space complexity. We improve this result, since our one-pass streaming PCA algorithm achieves an O(km/ε)+poly(k/ε) word space upper bound. This almost matches a known Ω(km/ε) bit lower bound of Woodruff (NIPS, 2014). We show that with two passes over the columns of A one can achieve an O(km)+poly(k/ε) word space upper bound; another lower bound of Woodruff (NIPS, 2014) shows that this is optimal for any constant number of passes (up to the poly(k/ε) term and the distinction between words versus bits). 4. Finally, in turnstile streams, in which we receive entries of A one at a time in an arbitrary order, we describe an algorithm with O((m+n)kε-1) words of space. This improves the O((m+n)ε-2)kε-2) upper bound of Clarkson and Woodruff (STOC 2009), and matches their Ω((m+n)kε-1) word lower bound. Notably, our results do not depend on the condition number or any singular value gaps of A.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Optimal principal component analysis in distributed and streaming models\",\"authors\":\"Christos Boutsidis, David P. Woodruff, Peilin Zhong\",\"doi\":\"10.1145/2897518.2897646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the Principal Component Analysis (PCA) problem in the distributed and streaming models of computation. Given a matrix A ∈ Rm×n, a rank parameter k<rank(A), and an accuracy parameter 0<ε<1, we want to output an m×k orthonormal matrix U for which ||A-UUTA||2F≤(1+ε)||A-Ak||2F where Ak∈Rm×n is the best rank-k approximation to A. Our contributions are summarized as follows: 1. In the arbitrary partition distributed model of Kannan et al. (COLT 2014), each of s machines holds a matrix Ai and A=ΣAi. Each machine should output U. Kannan et al. achieve O(skm/ε)+poly(sk/ε) words (of O(log(nm)) bits) communication. We obtain the improved bound of O(skm)+poly(sk/ε) words, and show an optimal (up to low order terms) Ω(skm) lower bound. This resolves an open question in the literature. A poly(ε-1) dependence is known to be required, but we separate this dependence from m. 2. In a more specific distributed model where each server receives a subset of columns of A, we bypass the above lower bound when A is φ-sparse in each column. Here we obtain an O(skφ/ε)+poly(sk/ε) word protocol. Our communication is independent of the matrix dimensions, and achieves the guarantee that each server, in addition to outputting U, outputs a subset of O(k/ε) columns of A containing a U in its span (that is, for the first time, we solve distributed column subset selection). Additionally, we show a matching Ω(skφ/ε) lower bound for distributed column subset selection. Achieving our communication bound when A is sparse in general but not sparse in each column, is impossible. 3. In the streaming model of computation, in which the columns of the matrix A arrive one at a time, an algorithm of Liberty (KDD, 2013) with an improved analysis by Ghashami and Phillips (SODA, 2014) achieves O(km/ε) \\\"real numbers\\\" space complexity. We improve this result, since our one-pass streaming PCA algorithm achieves an O(km/ε)+poly(k/ε) word space upper bound. This almost matches a known Ω(km/ε) bit lower bound of Woodruff (NIPS, 2014). We show that with two passes over the columns of A one can achieve an O(km)+poly(k/ε) word space upper bound; another lower bound of Woodruff (NIPS, 2014) shows that this is optimal for any constant number of passes (up to the poly(k/ε) term and the distinction between words versus bits). 4. Finally, in turnstile streams, in which we receive entries of A one at a time in an arbitrary order, we describe an algorithm with O((m+n)kε-1) words of space. This improves the O((m+n)ε-2)kε-2) upper bound of Clarkson and Woodruff (STOC 2009), and matches their Ω((m+n)kε-1) word lower bound. Notably, our results do not depend on the condition number or any singular value gaps of A.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

本文研究了分布式和流计算模型中的主成分分析问题。给定矩阵a∈Rm×n,秩参数k<秩(a),精度参数0<ε<1,我们想要输出一个m×k正交矩阵U,其中|| a - uuta ||2F≤(1+ε)|| a -Ak||2F,其中Ak∈Rm×n是a的最佳秩-k逼近。在Kannan et al. (COLT 2014)的任意分区分布模型中,s台机器中的每台机器都保存一个矩阵Ai和a =ΣAi。Kannan等人实现了O(skm/ε)+poly(sk/ε)字(of O(log(nm))位)的通信。我们得到了O(skm)+poly(sk/ε)字的改进界,并给出了一个最优(直到低阶项)Ω(skm)下界。这解决了文献中的一个悬而未决的问题。已知需要poly(ε-1)依赖性,但我们将这种依赖性从m. 2中分离出来。在更具体的分布式模型中,每个服务器接收a的列子集,当a在每列中为φ-稀疏时,我们绕过上述下界。这里我们得到了一个O(skφ/ε)+poly(sk/ε)字协议。我们的通信是独立于矩阵维数的,并且实现了保证每个服务器除了输出U之外,还输出包含U的a的O(k/ε)列的子集(即,我们首次解决了分布式列子集选择问题)。此外,我们还展示了一个匹配的Ω(skφ/ε)下界,用于分布式列子集的选择。当A总体上是稀疏的,但不是每一列都是稀疏的,实现我们的通信边界是不可能的。3.在矩阵A的列每次到达一列的流计算模型中,Liberty (KDD, 2013)算法与Ghashami和Phillips (SODA, 2014)的改进分析实现了O(km/ε)。“实数”空间复杂度。我们改进了这个结果,因为我们的一遍流PCA算法实现了O(km/ε)+poly(k/ε)字空间上界。这几乎与wooddruff已知的Ω(km/ε)钻头下界相匹配(NIPS, 2014)。我们证明了在A的列上经过两次可以实现O(km)+poly(k/ε)字空间上界;Woodruff (NIPS, 2014)的另一个下界表明,这对于任何恒定次数的通过(直到poly(k/ε)项以及字与位之间的区别)都是最佳的。4. 最后,在turnstile流中,我们每次以任意顺序接收A的一个条目,我们用O((m+n)kε-1)个词的空间描述了一个算法。这改进了Clarkson和Woodruff (STOC 2009)的O((m+n)ε-2)kε-2)上界,并匹配了他们的Ω((m+n)kε-1)下界。值得注意的是,我们的结果不依赖于条件数或A的任何奇异值间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal principal component analysis in distributed and streaming models
This paper studies the Principal Component Analysis (PCA) problem in the distributed and streaming models of computation. Given a matrix A ∈ Rm×n, a rank parameter k
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1