{"title":"路径点松弛和避障的平坦轨迹生成","authors":"F. Stoican, I. Prodan, D. Popescu","doi":"10.1109/MED.2015.7158827","DOIUrl":null,"url":null,"abstract":"This paper addresses some alternatives to classical trajectory generation for an autonomous vehicle which needs to pass through a priori given way-points. Using differential flatness for trajectory generation and B-splines for the flat output parametrization, the current study concentrates on constraint relaxations and on obstacle avoidance conditions. The results are validated through simulations over standard UAV dynamics.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Flat trajectory generation for way-points relaxations and obstacle avoidance\",\"authors\":\"F. Stoican, I. Prodan, D. Popescu\",\"doi\":\"10.1109/MED.2015.7158827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses some alternatives to classical trajectory generation for an autonomous vehicle which needs to pass through a priori given way-points. Using differential flatness for trajectory generation and B-splines for the flat output parametrization, the current study concentrates on constraint relaxations and on obstacle avoidance conditions. The results are validated through simulations over standard UAV dynamics.\",\"PeriodicalId\":316642,\"journal\":{\"name\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2015.7158827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flat trajectory generation for way-points relaxations and obstacle avoidance
This paper addresses some alternatives to classical trajectory generation for an autonomous vehicle which needs to pass through a priori given way-points. Using differential flatness for trajectory generation and B-splines for the flat output parametrization, the current study concentrates on constraint relaxations and on obstacle avoidance conditions. The results are validated through simulations over standard UAV dynamics.