兆赫无线电力传输中高效恒压功率接收器的设计方法

Jibin Song, Ming Liu, Chengbin Ma
{"title":"兆赫无线电力传输中高效恒压功率接收器的设计方法","authors":"Jibin Song, Ming Liu, Chengbin Ma","doi":"10.1109/IESES.2018.8349909","DOIUrl":null,"url":null,"abstract":"Megahertz (MHz) wireless power transfer (WPT) has been widely studied due to its lighter and more compact system and higher spatial freedom. This paper proposes a design methodology of the power receiver with high efficiency and constant output voltage in MHz WPT systems. The power receiver consists of four parts, the receiving coil, the Class E rectifier, the buck converter and the DC load. Firstly, the inductance, equivalent series resistance (ESR) and the coupling coefficients are formulated based on the physical model of the coupling coils. The Class E rectifier and the buck converter are also derived and analyzed. Secondly, the receiving coil and the Class E rectifier are designed and optimized simultaneously to maximize the efficiency while the buck converter is designed to works in a self-regulation mode to provide the constant output voltage. The system parameters design is formulated as an optimization problem and solved using the Genetic Algorithm (GA). Finally, simulation tool Advanced Design System (ADS) is used to verify the proposed design methodology.","PeriodicalId":146951,"journal":{"name":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design methodology of the power receiver with high efficiency and constant output voltage for megahertz wireless power transfer\",\"authors\":\"Jibin Song, Ming Liu, Chengbin Ma\",\"doi\":\"10.1109/IESES.2018.8349909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Megahertz (MHz) wireless power transfer (WPT) has been widely studied due to its lighter and more compact system and higher spatial freedom. This paper proposes a design methodology of the power receiver with high efficiency and constant output voltage in MHz WPT systems. The power receiver consists of four parts, the receiving coil, the Class E rectifier, the buck converter and the DC load. Firstly, the inductance, equivalent series resistance (ESR) and the coupling coefficients are formulated based on the physical model of the coupling coils. The Class E rectifier and the buck converter are also derived and analyzed. Secondly, the receiving coil and the Class E rectifier are designed and optimized simultaneously to maximize the efficiency while the buck converter is designed to works in a self-regulation mode to provide the constant output voltage. The system parameters design is formulated as an optimization problem and solved using the Genetic Algorithm (GA). Finally, simulation tool Advanced Design System (ADS) is used to verify the proposed design methodology.\",\"PeriodicalId\":146951,\"journal\":{\"name\":\"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IESES.2018.8349909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES.2018.8349909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

兆赫(MHz)无线电力传输(WPT)由于其系统更轻、更紧凑、空间自由度更高而得到了广泛的研究。本文提出了一种MHz WPT系统中高效恒压功率接收机的设计方法。电源接收机由接收线圈、E级整流器、降压变换器和直流负载四部分组成。首先,根据耦合线圈的物理模型,推导出电感、等效串联电阻(ESR)和耦合系数。对E类整流器和降压变换器也进行了推导和分析。其次,同时对接收线圈和E类整流器进行设计和优化,使效率最大化,同时将降压变换器设计为自调节模式,以提供恒定的输出电压。将系统参数设计表述为优化问题,并采用遗传算法求解。最后,利用仿真工具Advanced Design System (ADS)对所提出的设计方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design methodology of the power receiver with high efficiency and constant output voltage for megahertz wireless power transfer
Megahertz (MHz) wireless power transfer (WPT) has been widely studied due to its lighter and more compact system and higher spatial freedom. This paper proposes a design methodology of the power receiver with high efficiency and constant output voltage in MHz WPT systems. The power receiver consists of four parts, the receiving coil, the Class E rectifier, the buck converter and the DC load. Firstly, the inductance, equivalent series resistance (ESR) and the coupling coefficients are formulated based on the physical model of the coupling coils. The Class E rectifier and the buck converter are also derived and analyzed. Secondly, the receiving coil and the Class E rectifier are designed and optimized simultaneously to maximize the efficiency while the buck converter is designed to works in a self-regulation mode to provide the constant output voltage. The system parameters design is formulated as an optimization problem and solved using the Genetic Algorithm (GA). Finally, simulation tool Advanced Design System (ADS) is used to verify the proposed design methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing standardization needs for CHIL-based testing of power systems and components Performance analysis of a wearable photovoltaic system Detection of high impedance faults in PV systems using mathematical morphology Design and control of a novel omnidirectional dynamically balancing platform for remote inspection of confined and cluttered environments Hybrid UP-PWM for single-phase transformerless photovoltaic inverter to improve zero-crossing distortion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1