{"title":"在存在固定能量干扰机的情况下最大化能量收集发射机的吞吐量","authors":"Haseen Rahman","doi":"10.1109/NCC52529.2021.9530051","DOIUrl":null,"url":null,"abstract":"Maximizing the data throughput of point-to-point transmitting nodes which harvest exogenous energy is a widely considered problem in literature. In this work, we consider an additive white Gaussian noise channel in the presence of a jamming adversary. The legitimate transmitter is an energy harvesting (EH) node which attempts to maximize the amount of data conveyed before a specified deadline. The jamming node, on the other hand, tries to minimize the transmitter's data throughput by introducing targeted noise. We assume that the jammer has some fixed amount of energy for interfering. When both the nodes know the EH process in advance, known as the offline setting, we compute the actions of each node at the minmax equilibrium. In the online setting, where the energy arrivals are known in a causal manner, we first consider the case without jamming and show that a simple conservative algorithm can achieve at least a quarter of the optimal offline throughput. We then show that the algorithm has the same competitiveness in the presence of an offline jammer as well.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Throughput of an Energy Harvesting Transmitter in the Presence of a Jammer with Fixed Energy\",\"authors\":\"Haseen Rahman\",\"doi\":\"10.1109/NCC52529.2021.9530051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximizing the data throughput of point-to-point transmitting nodes which harvest exogenous energy is a widely considered problem in literature. In this work, we consider an additive white Gaussian noise channel in the presence of a jamming adversary. The legitimate transmitter is an energy harvesting (EH) node which attempts to maximize the amount of data conveyed before a specified deadline. The jamming node, on the other hand, tries to minimize the transmitter's data throughput by introducing targeted noise. We assume that the jammer has some fixed amount of energy for interfering. When both the nodes know the EH process in advance, known as the offline setting, we compute the actions of each node at the minmax equilibrium. In the online setting, where the energy arrivals are known in a causal manner, we first consider the case without jamming and show that a simple conservative algorithm can achieve at least a quarter of the optimal offline throughput. We then show that the algorithm has the same competitiveness in the presence of an offline jammer as well.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing the Throughput of an Energy Harvesting Transmitter in the Presence of a Jammer with Fixed Energy
Maximizing the data throughput of point-to-point transmitting nodes which harvest exogenous energy is a widely considered problem in literature. In this work, we consider an additive white Gaussian noise channel in the presence of a jamming adversary. The legitimate transmitter is an energy harvesting (EH) node which attempts to maximize the amount of data conveyed before a specified deadline. The jamming node, on the other hand, tries to minimize the transmitter's data throughput by introducing targeted noise. We assume that the jammer has some fixed amount of energy for interfering. When both the nodes know the EH process in advance, known as the offline setting, we compute the actions of each node at the minmax equilibrium. In the online setting, where the energy arrivals are known in a causal manner, we first consider the case without jamming and show that a simple conservative algorithm can achieve at least a quarter of the optimal offline throughput. We then show that the algorithm has the same competitiveness in the presence of an offline jammer as well.