云计算中的多资源部分有序任务调度

Chaokun Zhang, Yong Cui, Rong Zheng, E. Jinlong, Jianping Wu
{"title":"云计算中的多资源部分有序任务调度","authors":"Chaokun Zhang, Yong Cui, Rong Zheng, E. Jinlong, Jianping Wu","doi":"10.1109/IWQoS.2016.7590423","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the scheduling problem with multi-resource allocation in cloud computing environments. In contrast to existing work that focuses on flow-level scheduling, which treats flows in isolation, we consider dependency among subtasks of applications that imposes a partial order relationship in execution. We formulate the problem of Multi-Resource Partial-Ordered Task Scheduling (MR-POTS) to minimize the makespan. In the first stage, the proposed Dominant Resource Priority (DRP) algorithm decides the collection of subtasks for resource allocation by taking into account the partial order relationship and characteristics of subtasks. In the second stage, the proposed Maximum Utilization Allocation (MUA) algorithm partitions multiple resources among selected subtasks with the objective to maximize the overall utilization. Both theoretical analysis and experimental evaluation demonstrate the proposed algorithms can approximately achieve the minimal makespan with high resource utilization. Specifically, a reduction of 50% in makespan can be achieved compared with existing scheduling schemes.","PeriodicalId":304978,"journal":{"name":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-Resource Partial-Ordered Task Scheduling in cloud computing\",\"authors\":\"Chaokun Zhang, Yong Cui, Rong Zheng, E. Jinlong, Jianping Wu\",\"doi\":\"10.1109/IWQoS.2016.7590423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the scheduling problem with multi-resource allocation in cloud computing environments. In contrast to existing work that focuses on flow-level scheduling, which treats flows in isolation, we consider dependency among subtasks of applications that imposes a partial order relationship in execution. We formulate the problem of Multi-Resource Partial-Ordered Task Scheduling (MR-POTS) to minimize the makespan. In the first stage, the proposed Dominant Resource Priority (DRP) algorithm decides the collection of subtasks for resource allocation by taking into account the partial order relationship and characteristics of subtasks. In the second stage, the proposed Maximum Utilization Allocation (MUA) algorithm partitions multiple resources among selected subtasks with the objective to maximize the overall utilization. Both theoretical analysis and experimental evaluation demonstrate the proposed algorithms can approximately achieve the minimal makespan with high resource utilization. Specifically, a reduction of 50% in makespan can be achieved compared with existing scheduling schemes.\",\"PeriodicalId\":304978,\"journal\":{\"name\":\"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2016.7590423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2016.7590423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了云计算环境下多资源分配的调度问题。与关注流级调度的现有工作(隔离处理流)相反,我们考虑了应用程序的子任务之间的依赖关系,这些子任务在执行中施加了部分顺序关系。我们提出了多资源部分有序任务调度(MR-POTS)问题以最小化完工时间。在第一阶段,提出的DRP (Dominant Resource Priority)算法通过考虑子任务的偏序关系和子任务的特点,确定子任务的集合进行资源分配。在第二阶段,提出的最大利用率分配(MUA)算法将多个资源划分到选定的子任务中,目标是使整体利用率最大化。理论分析和实验验证表明,本文提出的算法可以近似地实现最小的makespan,同时具有较高的资源利用率。具体而言,与现有调度方案相比,最大完工时间可以减少50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Resource Partial-Ordered Task Scheduling in cloud computing
In this paper, we investigate the scheduling problem with multi-resource allocation in cloud computing environments. In contrast to existing work that focuses on flow-level scheduling, which treats flows in isolation, we consider dependency among subtasks of applications that imposes a partial order relationship in execution. We formulate the problem of Multi-Resource Partial-Ordered Task Scheduling (MR-POTS) to minimize the makespan. In the first stage, the proposed Dominant Resource Priority (DRP) algorithm decides the collection of subtasks for resource allocation by taking into account the partial order relationship and characteristics of subtasks. In the second stage, the proposed Maximum Utilization Allocation (MUA) algorithm partitions multiple resources among selected subtasks with the objective to maximize the overall utilization. Both theoretical analysis and experimental evaluation demonstrate the proposed algorithms can approximately achieve the minimal makespan with high resource utilization. Specifically, a reduction of 50% in makespan can be achieved compared with existing scheduling schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSRT: Multi-Source Request and Transmission in Content-Centric Networks Tube caching: An effective caching scheme in Content-Centric Networking DVMP: Incremental traffic-aware VM placement on heterogeneous servers in data centers Adaptive rate control over mobile data networks with heuristic rate compensations Selecting most informative contributors with unknown costs for budgeted crowdsensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1