超分辨率技术在探地雷达成像中的应用前景

S. Shrestha, I. Arai, T. Miwa
{"title":"超分辨率技术在探地雷达成像中的应用前景","authors":"S. Shrestha, I. Arai, T. Miwa","doi":"10.1117/12.462234","DOIUrl":null,"url":null,"abstract":"ABSTRACT Improvement of resolution is the challenging issue in Ground Penetrating Radar (GPR) and that is greatly desired to increase in order to get the clear imaging of very closely buried targets. GPR has been approved as very successful technology for various kinds of investigations & detection of buried targets. In this paper, the application possibility of super resolution technique MUSIC (Multiple Signal Classification) algorithm is examined because of its superior results. Moreover, the conventional FFT (Fast Fourier Transform) has been utilized to get higher precision receiving signal level. Combined Processing Method (CPM) oftime domain response of MUSIC and IFFT (Inverse FFT) has been proposed for the first time to get high resolution and high precision receiving signal level. Simulation and experiment result show that the proposed method has high resolution and high precision receiving signal level than other conventional signal processing approach. Key words: Subsurface radar, FFT, MUSIC Algorithm, Super Resolution","PeriodicalId":256772,"journal":{"name":"International Conference on Ground Penetrating Radar","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application possibilities of super-resolution technique for GPR imaging\",\"authors\":\"S. Shrestha, I. Arai, T. Miwa\",\"doi\":\"10.1117/12.462234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Improvement of resolution is the challenging issue in Ground Penetrating Radar (GPR) and that is greatly desired to increase in order to get the clear imaging of very closely buried targets. GPR has been approved as very successful technology for various kinds of investigations & detection of buried targets. In this paper, the application possibility of super resolution technique MUSIC (Multiple Signal Classification) algorithm is examined because of its superior results. Moreover, the conventional FFT (Fast Fourier Transform) has been utilized to get higher precision receiving signal level. Combined Processing Method (CPM) oftime domain response of MUSIC and IFFT (Inverse FFT) has been proposed for the first time to get high resolution and high precision receiving signal level. Simulation and experiment result show that the proposed method has high resolution and high precision receiving signal level than other conventional signal processing approach. Key words: Subsurface radar, FFT, MUSIC Algorithm, Super Resolution\",\"PeriodicalId\":256772,\"journal\":{\"name\":\"International Conference on Ground Penetrating Radar\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.462234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.462234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提高分辨率是探地雷达(GPR)研究中的一个难题,为了获得深埋目标的清晰成像,迫切需要提高分辨率。探地雷达已被认为是一种非常成功的技术,用于各种隐蔽目标的调查和探测。鉴于MUSIC (Multiple Signal Classification,多信号分类)算法的优越性,本文对其应用的可能性进行了探讨。此外,利用传统的快速傅立叶变换(FFT)获得更高精度的接收信号电平。首次提出了MUSIC和逆FFT (Inverse FFT)时域响应的组合处理方法(CPM),以获得高分辨率、高精度的接收信号电平。仿真和实验结果表明,与其他传统的信号处理方法相比,该方法具有高分辨率和高精度的接收信号电平。关键词:地下雷达,FFT, MUSIC算法,超分辨率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application possibilities of super-resolution technique for GPR imaging
ABSTRACT Improvement of resolution is the challenging issue in Ground Penetrating Radar (GPR) and that is greatly desired to increase in order to get the clear imaging of very closely buried targets. GPR has been approved as very successful technology for various kinds of investigations & detection of buried targets. In this paper, the application possibility of super resolution technique MUSIC (Multiple Signal Classification) algorithm is examined because of its superior results. Moreover, the conventional FFT (Fast Fourier Transform) has been utilized to get higher precision receiving signal level. Combined Processing Method (CPM) oftime domain response of MUSIC and IFFT (Inverse FFT) has been proposed for the first time to get high resolution and high precision receiving signal level. Simulation and experiment result show that the proposed method has high resolution and high precision receiving signal level than other conventional signal processing approach. Key words: Subsurface radar, FFT, MUSIC Algorithm, Super Resolution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a tropical ice body on Iztaccihuatl volcano, Mexico Neural network target identifier based on statistical features of GPR signals 3D estimation of target positions with borehole radar using e-field sensor array Advanced processing of cross-hole radar-tomographic data: inversion of partial data sets and error analysis Polarimetric model for a stepped-frequency continuous-wave ground-penetrating radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1