基于成本效益并行测试的新兴神经网络加速器健康监测

Qi Liu, Tao Liu, Zihao Liu, Wujie Wen, Chengmo Yang
{"title":"基于成本效益并行测试的新兴神经网络加速器健康监测","authors":"Qi Liu, Tao Liu, Zihao Liu, Wujie Wen, Chengmo Yang","doi":"10.1109/DAC18072.2020.9218675","DOIUrl":null,"url":null,"abstract":"ReRAM-based neural network accelerator is a promising solution to handle the memory-and computation-intensive deep learning workloads. However, it suffers from unique device errors. These errors can accumulate to massive levels during the run time and cause significant accuracy drop. It is crucial to obtain its fault status in real-time before any proper repair mechanism can be applied. However, calibrating such statistical information is non-trivial because of the need of a large number of test patterns, long test time, and high test coverage considering that complex errors may appear in million-to-billion weight parameters. In this paper, we leverage the concept of comer data that can significantly confuse the decision making of neural network model, as well as the training algorithm, to generate only a small set of test patterns that is tuned to be sensitive to different levels of error accumulation and accuracy loss. Experimental results show that our method can quickly and correctly report the fault status of a running accelerator, outperforming existing solutions in both detection efficiency and cost","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Monitoring the Health of Emerging Neural Network Accelerators with Cost-effective Concurrent Test\",\"authors\":\"Qi Liu, Tao Liu, Zihao Liu, Wujie Wen, Chengmo Yang\",\"doi\":\"10.1109/DAC18072.2020.9218675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ReRAM-based neural network accelerator is a promising solution to handle the memory-and computation-intensive deep learning workloads. However, it suffers from unique device errors. These errors can accumulate to massive levels during the run time and cause significant accuracy drop. It is crucial to obtain its fault status in real-time before any proper repair mechanism can be applied. However, calibrating such statistical information is non-trivial because of the need of a large number of test patterns, long test time, and high test coverage considering that complex errors may appear in million-to-billion weight parameters. In this paper, we leverage the concept of comer data that can significantly confuse the decision making of neural network model, as well as the training algorithm, to generate only a small set of test patterns that is tuned to be sensitive to different levels of error accumulation and accuracy loss. Experimental results show that our method can quickly and correctly report the fault status of a running accelerator, outperforming existing solutions in both detection efficiency and cost\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于reram的神经网络加速器是处理内存和计算密集型深度学习工作负载的一种很有前途的解决方案。然而,它遭受独特的设备错误。这些错误可能在运行期间累积到巨大的水平,并导致显著的准确性下降。在采用适当的修复机制之前,实时获取其故障状态是至关重要的。然而,校正这样的统计信息是非常重要的,因为需要大量的测试模式、较长的测试时间和较高的测试覆盖率,考虑到复杂的错误可能出现在百万到十亿的权重参数中。在本文中,我们利用角数据的概念,这可能会严重混淆神经网络模型的决策,以及训练算法,只生成一组测试模式,这些模式被调整为对不同级别的错误积累和准确性损失敏感。实验结果表明,该方法能够快速准确地检测出运行中的加速器的故障状态,在检测效率和成本上都优于现有的检测方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring the Health of Emerging Neural Network Accelerators with Cost-effective Concurrent Test
ReRAM-based neural network accelerator is a promising solution to handle the memory-and computation-intensive deep learning workloads. However, it suffers from unique device errors. These errors can accumulate to massive levels during the run time and cause significant accuracy drop. It is crucial to obtain its fault status in real-time before any proper repair mechanism can be applied. However, calibrating such statistical information is non-trivial because of the need of a large number of test patterns, long test time, and high test coverage considering that complex errors may appear in million-to-billion weight parameters. In this paper, we leverage the concept of comer data that can significantly confuse the decision making of neural network model, as well as the training algorithm, to generate only a small set of test patterns that is tuned to be sensitive to different levels of error accumulation and accuracy loss. Experimental results show that our method can quickly and correctly report the fault status of a running accelerator, outperforming existing solutions in both detection efficiency and cost
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1