多项式型优化问题的有限核定理及其一些应用

Wu Wen-tsun
{"title":"多项式型优化问题的有限核定理及其一些应用","authors":"Wu Wen-tsun","doi":"10.1145/1073884.1073887","DOIUrl":null,"url":null,"abstract":"Extremalization and optimization problems are considered as of utmost importance both in the past and in the present days. Thus, in the early beginning of infinitesimal calculus the determination of maxima and minima is one of the stimulating problems causing the creation of calculus and one of the successful applications which stimulates its rapid further development. However, the maxima and minima involved are all of local character leading to equations difficult to be solved, not to say the inherent logical difficulties involving necessary and/or sufficient conditions to be satisfied. In recent years owing to creation of computers various kinds of numerical methods have been developed which involve usually some converging processes. These methods, besides such problems as stability or error-control, can hardly give the greatest or least value, or global-optimal value for short over the whole domain, supposed to exist in advance. However, the problem becomes very agreeable if we limit ourselves to the polynomial-type case. In fact, based on the classical treatment of polynomial equations-solving in ancient China and its modernization due to J.F. Ritt, we have discovered a Finite Kernel Theorem to the effect that a finite set of real values, to be called the finite kernel set of the given problem, may be so determined that all possible extremal values will be found among this finite set and the corresponding extremal zeros are then trivially determined. Clearly it will give the global optimal value over the whole domain in consideration, if it is already known to exist in some way. Associated packages wsolve and e_val have been given by D. K. Wang and had been applied with success in various kinds of problems, polynomial-definiteness, non-linear programming, etc., particularly problems involving inequalities.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a finite kernel theorem for polynomial-type optimization problems and some of its applications\",\"authors\":\"Wu Wen-tsun\",\"doi\":\"10.1145/1073884.1073887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extremalization and optimization problems are considered as of utmost importance both in the past and in the present days. Thus, in the early beginning of infinitesimal calculus the determination of maxima and minima is one of the stimulating problems causing the creation of calculus and one of the successful applications which stimulates its rapid further development. However, the maxima and minima involved are all of local character leading to equations difficult to be solved, not to say the inherent logical difficulties involving necessary and/or sufficient conditions to be satisfied. In recent years owing to creation of computers various kinds of numerical methods have been developed which involve usually some converging processes. These methods, besides such problems as stability or error-control, can hardly give the greatest or least value, or global-optimal value for short over the whole domain, supposed to exist in advance. However, the problem becomes very agreeable if we limit ourselves to the polynomial-type case. In fact, based on the classical treatment of polynomial equations-solving in ancient China and its modernization due to J.F. Ritt, we have discovered a Finite Kernel Theorem to the effect that a finite set of real values, to be called the finite kernel set of the given problem, may be so determined that all possible extremal values will be found among this finite set and the corresponding extremal zeros are then trivially determined. Clearly it will give the global optimal value over the whole domain in consideration, if it is already known to exist in some way. Associated packages wsolve and e_val have been given by D. K. Wang and had been applied with success in various kinds of problems, polynomial-definiteness, non-linear programming, etc., particularly problems involving inequalities.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

极值和优化问题在过去和现在都被认为是最重要的问题。因此,在微积分的早期,极大值和极小值的确定是引起微积分产生的激励问题之一,也是促使微积分迅速进一步发展的成功应用之一。然而,所涉及的最大值和最小值都是局部特征,导致方程难以求解,更不用说固有的逻辑困难,涉及满足必要和/或充分条件。近年来,由于计算机的发明,发展了各种通常涉及一些收敛过程的数值方法。这些方法除了存在稳定性或误差控制等问题外,很难给出假定预先存在的整个域的最大值或最小值,或简称全局最优值。然而,如果我们把自己限制在多项式类型的情况下,这个问题就变得非常令人愉快了。事实上,基于中国古代多项式方程解法的经典处理方法和J.F. Ritt对多项式方程解法的现代化,我们已经发现了一个有限核定理,它的作用是:给定问题的实值的有限集,称为给定问题的有限核集,可以如此确定,以至于在这个有限集中可以找到所有可能的极值,然后平凡地确定相应的极值零点。显然,如果已知以某种方式存在,它将给出所考虑的整个域的全局最优值。相关的wsolve和e_val包由d.k. Wang给出,并已成功地应用于多项式确定性、非线性规划等各种问题,特别是涉及不等式的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On a finite kernel theorem for polynomial-type optimization problems and some of its applications
Extremalization and optimization problems are considered as of utmost importance both in the past and in the present days. Thus, in the early beginning of infinitesimal calculus the determination of maxima and minima is one of the stimulating problems causing the creation of calculus and one of the successful applications which stimulates its rapid further development. However, the maxima and minima involved are all of local character leading to equations difficult to be solved, not to say the inherent logical difficulties involving necessary and/or sufficient conditions to be satisfied. In recent years owing to creation of computers various kinds of numerical methods have been developed which involve usually some converging processes. These methods, besides such problems as stability or error-control, can hardly give the greatest or least value, or global-optimal value for short over the whole domain, supposed to exist in advance. However, the problem becomes very agreeable if we limit ourselves to the polynomial-type case. In fact, based on the classical treatment of polynomial equations-solving in ancient China and its modernization due to J.F. Ritt, we have discovered a Finite Kernel Theorem to the effect that a finite set of real values, to be called the finite kernel set of the given problem, may be so determined that all possible extremal values will be found among this finite set and the corresponding extremal zeros are then trivially determined. Clearly it will give the global optimal value over the whole domain in consideration, if it is already known to exist in some way. Associated packages wsolve and e_val have been given by D. K. Wang and had been applied with success in various kinds of problems, polynomial-definiteness, non-linear programming, etc., particularly problems involving inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A view on the future of symbolic computation Solving second order linear differential equations with Klein's theorem Partial degree formulae for rational algebraic surfaces A procedure for proving special function inequalities involving a discrete parameter Fast algorithms for polynomial solutions of linear differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1