使用深度强化学习的衍生品Delta套期保值

Alexandru Giurca, S. Borovkova
{"title":"使用深度强化学习的衍生品Delta套期保值","authors":"Alexandru Giurca, S. Borovkova","doi":"10.2139/ssrn.3847272","DOIUrl":null,"url":null,"abstract":"Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data.","PeriodicalId":181062,"journal":{"name":"Corporate Governance: Disclosure","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Delta Hedging of Derivatives using Deep Reinforcement Learning\",\"authors\":\"Alexandru Giurca, S. Borovkova\",\"doi\":\"10.2139/ssrn.3847272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data.\",\"PeriodicalId\":181062,\"journal\":{\"name\":\"Corporate Governance: Disclosure\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corporate Governance: Disclosure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3847272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corporate Governance: Disclosure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3847272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在Kolm和Ritter(2019)以及Cao等人(2019)之前工作的基础上,本文探索了深度强化学习在基于效用的框架中用于期权Delta套期保值的新应用,其中代理面临套期保值错误和交易成本之间的权衡,同时旨在最大化预期利润和损失并最小化其方差。在交易成本存在的情况下,我们比较了两种最先进的强化学习算法与实践中广泛使用的两种简单基准策略的性能。我们对不同市场特征、交易成本、期权期限和套期保值频率的综合数据进行了分析,发现代理人在资产价格随机波动和跳跃的市场、高交易成本、高套期保值频率和长期限期权的市场中表现优异。此外,我们将训练过的算法应用于类似(但从未见过)的选项,并提出了一种提高算法对不同波动水平的鲁棒性的方法。最后,我们将在模拟数据上学习到的对冲策略转移到s&p;P500指数的经验期权数据上,并证明了迁移学习是成功的:与Black- Scholes对冲策略相比,强化学习所遇到的对冲成本降低了30%。我们的研究结果表明,基于强化学习的对冲策略优于基准策略,适用于交易者进行现实生活中的对冲决策,即使网络是在合成(但通用)数据上训练的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delta Hedging of Derivatives using Deep Reinforcement Learning
Building on previous work of Kolm and Ritter (2019) and Cao et al. (2019), this paper explores the novel application of Deep Reinforcement Learning for Delta Hedging of options in an utility based framework where an agent is faced with a trade-off between hedging error and transaction costs while aiming at maximizing the expected profit and loss and minimizing its variance. In the presence of transaction costs we compare the performance of two state-of-the-art Reinforcement Learning algorithms with two simple benchmark strategies widely used in practice. We perform the analysis on synthetic data for different market characteristics, transaction costs, option maturities and hedging frequencies, and find that the agents deliver a strong performance in markets characterized by stochastic volatility and jumps in asset prices, as well as for high transaction costs, high hedging frequency and for options with long maturities. Furthermore, we apply trained algorithms to similar (but not seen before) options and present a way of improving the robustness of the algorithms to different levels of volatility. Finally, we transfer the hedging strategies learned on simulated data to empirical option data on the S&P500 index, and demonstrate that transfer learning is successful: hedge costs encountered by reinforced learning decrease by as much as 30% compared to the Black- Scholes hedging strategy. Our results indicate that the hedging strategies based on Reinforcement Learning outperform the benchmark strategies and are suitable for traders taking real-life hedging decisions, even when the networks are trained on synthetic (but versatile) data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do Firms Redact Information from Material Contracts to Conceal Bad News? Forecasting Shares Outstanding How Important Are Semi-Annual Earnings Announcements? An Information Event Perspective Tone at the Bottom: Measuring Corporate Misconduct Risk from the Text of Employee Reviews Hiding in Plain Sight: The Global Implications of Manager Disclosure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1