在发育毒性研究中使用分数多项式进行剂量-反应建模和定量风险评估

C. Faes, H. Geys, M. Aerts, G. Molenberghs
{"title":"在发育毒性研究中使用分数多项式进行剂量-反应建模和定量风险评估","authors":"C. Faes, H. Geys, M. Aerts, G. Molenberghs","doi":"10.1191/1471082X03st051oa","DOIUrl":null,"url":null,"abstract":"Developmental toxicity studies are designed to assess the potential adverse effects of an exposure on developing fetuses. Safe dose levels can be determined using dose-response modelling. To this end, it is important to investigate the effect of misspecifying the dose-response model on the safe dose. Since classical polynomial predictors are often of poor quality, there is a clear need for alternative specifications of the predictors, such as fractional polynomials. By means of simulations, we will show how fractional polynomial predictors may resolve possible model misspecifications and may thus yield more reliable estimates of the benchmark doses.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Use of fractional polynomials for dose-response modelling and quantitative risk assessment in developmental toxicity studies\",\"authors\":\"C. Faes, H. Geys, M. Aerts, G. Molenberghs\",\"doi\":\"10.1191/1471082X03st051oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developmental toxicity studies are designed to assess the potential adverse effects of an exposure on developing fetuses. Safe dose levels can be determined using dose-response modelling. To this end, it is important to investigate the effect of misspecifying the dose-response model on the safe dose. Since classical polynomial predictors are often of poor quality, there is a clear need for alternative specifications of the predictors, such as fractional polynomials. By means of simulations, we will show how fractional polynomial predictors may resolve possible model misspecifications and may thus yield more reliable estimates of the benchmark doses.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X03st051oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st051oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

发育毒性研究的目的是评估接触某种物质对发育中的胎儿的潜在不利影响。安全剂量水平可通过剂量反应模型确定。为此,研究剂量反应模型的错误规定对安全剂量的影响是很重要的。由于经典多项式预测器通常质量较差,因此显然需要预测器的替代规范,例如分数多项式。通过模拟,我们将展示分数多项式预测器如何解决可能的模型错误规范,从而产生更可靠的基准剂量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of fractional polynomials for dose-response modelling and quantitative risk assessment in developmental toxicity studies
Developmental toxicity studies are designed to assess the potential adverse effects of an exposure on developing fetuses. Safe dose levels can be determined using dose-response modelling. To this end, it is important to investigate the effect of misspecifying the dose-response model on the safe dose. Since classical polynomial predictors are often of poor quality, there is a clear need for alternative specifications of the predictors, such as fractional polynomials. By means of simulations, we will show how fractional polynomial predictors may resolve possible model misspecifications and may thus yield more reliable estimates of the benchmark doses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1