基于聚类的证据数据库查询松弛方法

Abir Amami, Zied Elouedi, A. Hadjali
{"title":"基于聚类的证据数据库查询松弛方法","authors":"Abir Amami, Zied Elouedi, A. Hadjali","doi":"10.1109/AICCSA.2016.7945733","DOIUrl":null,"url":null,"abstract":"Queries posed by a user over a database do not always return the desired responses. It may sometimes result an empty set of answers especially when data are pervaded with uncertainty and imprecision. Thus, to address this problem, we propose an approach for relaxing a failing query in the context of evidential databases. The uncertainty in such databases is expressed within the belief function theory. The key idea of our approach is to use a machine learning method more precisely the belief K-modes clustering technique to relax the failing queries by modifying the constraints in order to provide successful alternatives which may be of interest to the user.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A clustering based approach for query relaxation in evidential databases\",\"authors\":\"Abir Amami, Zied Elouedi, A. Hadjali\",\"doi\":\"10.1109/AICCSA.2016.7945733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Queries posed by a user over a database do not always return the desired responses. It may sometimes result an empty set of answers especially when data are pervaded with uncertainty and imprecision. Thus, to address this problem, we propose an approach for relaxing a failing query in the context of evidential databases. The uncertainty in such databases is expressed within the belief function theory. The key idea of our approach is to use a machine learning method more precisely the belief K-modes clustering technique to relax the failing queries by modifying the constraints in order to provide successful alternatives which may be of interest to the user.\",\"PeriodicalId\":448329,\"journal\":{\"name\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2016.7945733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用户对数据库提出的查询并不总是返回所需的响应。它有时可能导致一组空的答案,特别是当数据充满不确定性和不精确时。因此,为了解决这个问题,我们提出了一种在证据数据库环境中放松失败查询的方法。这种数据库中的不确定性用信念函数理论来表示。我们方法的关键思想是更精确地使用机器学习方法,即信念k模式聚类技术,通过修改约束来放松失败的查询,从而提供用户可能感兴趣的成功替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A clustering based approach for query relaxation in evidential databases
Queries posed by a user over a database do not always return the desired responses. It may sometimes result an empty set of answers especially when data are pervaded with uncertainty and imprecision. Thus, to address this problem, we propose an approach for relaxing a failing query in the context of evidential databases. The uncertainty in such databases is expressed within the belief function theory. The key idea of our approach is to use a machine learning method more precisely the belief K-modes clustering technique to relax the failing queries by modifying the constraints in order to provide successful alternatives which may be of interest to the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Foreword — Message from the general chairs Towards a framework for customer emotion detection Development of a thematic and structural elements grid for e-government strategies: Case study of Swiss cantons Complementary features for traffic sign detection and recognition Priority-MAC: A priority based medium access control solution with QoS for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1