利用非齐次泊松过程进行计算机病毒传播的统计推断

H. Okamura, K. Tateishi, T. Dohi
{"title":"利用非齐次泊松过程进行计算机病毒传播的统计推断","authors":"H. Okamura, K. Tateishi, T. Dohi","doi":"10.1109/ISSRE.2007.28","DOIUrl":null,"url":null,"abstract":"This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.","PeriodicalId":193805,"journal":{"name":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","volume":"150 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Statistical Inference of Computer Virus Propagation Using Non-Homogeneous Poisson Processes\",\"authors\":\"H. Okamura, K. Tateishi, T. Dohi\",\"doi\":\"10.1109/ISSRE.2007.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.\",\"PeriodicalId\":193805,\"journal\":{\"name\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"volume\":\"150 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2007.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文利用非齐次泊松过程(NHPPs)对计算机病毒传播进行了统计推断。在一定的数学假设下,被感染主机的数量可以用NHPP来建模,特别是本文将混合型NHPP框架应用于病毒周期性传播的统计推断。混合型NHPP是由多个NHPP叠加而成的。在数值实验中,我们检验了NHPPs拟合真实病毒感染数据的拟合优度准则,并讨论了基于模型的计算机病毒传播预测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Inference of Computer Virus Propagation Using Non-Homogeneous Poisson Processes
This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-parametric Predictive Inference of Preventive Rejuvenation Schedule in Operational Software Systems Predicting Subsystem Failures using Dependency Graph Complexities Integrated Software Vulnerability and Security Functionality Assessment Correlations between Internal Software Metrics and Software Dependability in a Large Population of Small C/C++ Programs On the Impact of Injection Triggers for OS Robustness Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1