利用选择性图像配准实现水下结构自主检测的高效视觉SLAM

Seonghun Hong, Jinwhan Kim
{"title":"利用选择性图像配准实现水下结构自主检测的高效视觉SLAM","authors":"Seonghun Hong, Jinwhan Kim","doi":"10.1109/AUV.2016.7778670","DOIUrl":null,"url":null,"abstract":"Visual inspection of underwater structures including ship-hull inspection has been performed by human divers. It is a highly dangerous task and thus can be a potential application for unmanned underwater vehicles. This paper introduces an efficient visual simultaneous localization and mapping (SLAM) algorithm that can be applied to the autonomous inspection of underwater structures. Considering that visual features are sparsely located on the surface of typical underwater structures, the proposed visual SLAM algorithm employs a selective image registration scheme consisting of key-frame selection and key-pair selection. By using only potentially effective images and image pairs for feature-based image registration, the computational burden of the visual SLAM can be substantially reduced, compared with the conventional method. Experimental results using a hover-capable unmanned underwater vehicle verify the practical feasibility and performance of the proposed methodology.","PeriodicalId":416057,"journal":{"name":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient visual SLAM using selective image registration for autonomous inspection of underwater structures\",\"authors\":\"Seonghun Hong, Jinwhan Kim\",\"doi\":\"10.1109/AUV.2016.7778670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual inspection of underwater structures including ship-hull inspection has been performed by human divers. It is a highly dangerous task and thus can be a potential application for unmanned underwater vehicles. This paper introduces an efficient visual simultaneous localization and mapping (SLAM) algorithm that can be applied to the autonomous inspection of underwater structures. Considering that visual features are sparsely located on the surface of typical underwater structures, the proposed visual SLAM algorithm employs a selective image registration scheme consisting of key-frame selection and key-pair selection. By using only potentially effective images and image pairs for feature-based image registration, the computational burden of the visual SLAM can be substantially reduced, compared with the conventional method. Experimental results using a hover-capable unmanned underwater vehicle verify the practical feasibility and performance of the proposed methodology.\",\"PeriodicalId\":416057,\"journal\":{\"name\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV.2016.7778670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2016.7778670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

水下结构物的目视检测包括船体的目视检测已经由人工潜水员完成。这是一项高度危险的任务,因此可以作为无人水下航行器的潜在应用。本文介绍了一种有效的视觉同步定位与制图(SLAM)算法,可用于水下结构体的自主检测。针对典型水下结构表面视觉特征稀疏的特点,本文提出的视觉SLAM算法采用了一种由关键帧选择和密钥对选择组成的选择性图像配准方案。通过只使用潜在有效的图像和图像对进行基于特征的图像配准,与传统方法相比,可以大大减少视觉SLAM的计算负担。实验结果验证了该方法的可行性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient visual SLAM using selective image registration for autonomous inspection of underwater structures
Visual inspection of underwater structures including ship-hull inspection has been performed by human divers. It is a highly dangerous task and thus can be a potential application for unmanned underwater vehicles. This paper introduces an efficient visual simultaneous localization and mapping (SLAM) algorithm that can be applied to the autonomous inspection of underwater structures. Considering that visual features are sparsely located on the surface of typical underwater structures, the proposed visual SLAM algorithm employs a selective image registration scheme consisting of key-frame selection and key-pair selection. By using only potentially effective images and image pairs for feature-based image registration, the computational burden of the visual SLAM can be substantially reduced, compared with the conventional method. Experimental results using a hover-capable unmanned underwater vehicle verify the practical feasibility and performance of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk and reliability modelling for multi-vehicle marine domains Terrain Aided Navigation for Long Range AUV operations at arctic latitudes Evaluation of terrain collision risks for flight style autonomous underwater vehicles Landing-sleep and drifting-sleep experiments of the underwater glider for long-term observation Uncertainty management during hybrid autonomous underwater vehicle missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1