预测环境可持续性引擎的有效效率:一种神经网络方法

B. Eren, İ. Cesur
{"title":"预测环境可持续性引擎的有效效率:一种神经网络方法","authors":"B. Eren, İ. Cesur","doi":"10.35377/saucis...1311014","DOIUrl":null,"url":null,"abstract":"Predicting engine efficiency for environmental sustainability is crucial in the automotive industry. Accurate estimation and optimization of engine efficiency aid in vehicle design decisions, fuel efficiency enhancement, and emission reduction. Traditional methods for predicting efficiency are challenging and time-consuming, leading to the adoption of artificial intelligence techniques like artificial neural networks (ANN). Neural networks can learn from complex datasets and model intricate relationships, making them promise for accurate predictions. By analyzing engine parameters such as fuel type, air-fuel ratio, speed, load, and temperature, neural networks can identify patterns influencing emission levels. These models enable engineers to optimize efficiency and reduce harmful emissions. ANN offers advantages in predicting efficiency by learning from vast amounts of data, extracting meaningful patterns, and identifying complex relationships. Accurate predictions result in better performance, fuel economy, and reduced environmental impacts. Studies have successfully employed ANN to estimate engine emissions and performance, showcasing its reliability in predicting engine characteristics. By leveraging ANN, informed decisions can be made regarding engine design, adjustments, and optimization techniques, leading to enhanced fuel efficiency and reduced emissions. Predicting engine efficiency using ANN holds promise for achieving environmental sustainability in the automotive sector.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Effective Efficiency of the Engine for Environmental Sustainability: A Neural Network Approach\",\"authors\":\"B. Eren, İ. Cesur\",\"doi\":\"10.35377/saucis...1311014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting engine efficiency for environmental sustainability is crucial in the automotive industry. Accurate estimation and optimization of engine efficiency aid in vehicle design decisions, fuel efficiency enhancement, and emission reduction. Traditional methods for predicting efficiency are challenging and time-consuming, leading to the adoption of artificial intelligence techniques like artificial neural networks (ANN). Neural networks can learn from complex datasets and model intricate relationships, making them promise for accurate predictions. By analyzing engine parameters such as fuel type, air-fuel ratio, speed, load, and temperature, neural networks can identify patterns influencing emission levels. These models enable engineers to optimize efficiency and reduce harmful emissions. ANN offers advantages in predicting efficiency by learning from vast amounts of data, extracting meaningful patterns, and identifying complex relationships. Accurate predictions result in better performance, fuel economy, and reduced environmental impacts. Studies have successfully employed ANN to estimate engine emissions and performance, showcasing its reliability in predicting engine characteristics. By leveraging ANN, informed decisions can be made regarding engine design, adjustments, and optimization techniques, leading to enhanced fuel efficiency and reduced emissions. Predicting engine efficiency using ANN holds promise for achieving environmental sustainability in the automotive sector.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis...1311014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1311014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在汽车工业中,预测发动机效率对环境的可持续性至关重要。准确估计和优化发动机效率有助于车辆设计决策,提高燃油效率和减少排放。传统的效率预测方法既具有挑战性又耗时,因此需要采用人工神经网络(ANN)等人工智能技术。神经网络可以从复杂的数据集中学习,并为复杂的关系建模,这使它们有望做出准确的预测。通过分析发动机参数,如燃料类型、空燃比、转速、负载和温度,神经网络可以识别影响排放水平的模式。这些模型使工程师能够优化效率并减少有害排放。人工神经网络通过从大量数据中学习、提取有意义的模式和识别复杂的关系,在预测效率方面提供了优势。准确的预测可以提高性能,节省燃料,减少对环境的影响。研究已经成功地利用人工神经网络来估计发动机的排放和性能,证明了它在预测发动机特性方面的可靠性。通过利用人工神经网络,可以在发动机设计、调整和优化技术方面做出明智的决策,从而提高燃油效率并减少排放。利用人工神经网络预测发动机效率有望实现汽车行业的环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Effective Efficiency of the Engine for Environmental Sustainability: A Neural Network Approach
Predicting engine efficiency for environmental sustainability is crucial in the automotive industry. Accurate estimation and optimization of engine efficiency aid in vehicle design decisions, fuel efficiency enhancement, and emission reduction. Traditional methods for predicting efficiency are challenging and time-consuming, leading to the adoption of artificial intelligence techniques like artificial neural networks (ANN). Neural networks can learn from complex datasets and model intricate relationships, making them promise for accurate predictions. By analyzing engine parameters such as fuel type, air-fuel ratio, speed, load, and temperature, neural networks can identify patterns influencing emission levels. These models enable engineers to optimize efficiency and reduce harmful emissions. ANN offers advantages in predicting efficiency by learning from vast amounts of data, extracting meaningful patterns, and identifying complex relationships. Accurate predictions result in better performance, fuel economy, and reduced environmental impacts. Studies have successfully employed ANN to estimate engine emissions and performance, showcasing its reliability in predicting engine characteristics. By leveraging ANN, informed decisions can be made regarding engine design, adjustments, and optimization techniques, leading to enhanced fuel efficiency and reduced emissions. Predicting engine efficiency using ANN holds promise for achieving environmental sustainability in the automotive sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1