基于LOD的电影领域知识图谱构建

Qiuyu Lei, Yun Liu
{"title":"基于LOD的电影领域知识图谱构建","authors":"Qiuyu Lei, Yun Liu","doi":"10.1109/Ubi-Media.2019.00019","DOIUrl":null,"url":null,"abstract":"Domain-specific knowledge graphs can represent complex domain knowledge in a structured format and have achieved great success in practical applications. Recently, knowledge graphs have been widely used in recommender systems because of their ability to integrate various recommendation models and deal with data sparseness and cold-start problems. In this paper, we propose an approach to extract movie related information from Linked Open Data (LOD) and construct the knowledge graph of movie domain. And the Neo4j graph database, which is characterized by friendly user interface and quick inquiry, is used to visualize the knowledge graph.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructing Movie Domain Knowledge Graph Based on LOD\",\"authors\":\"Qiuyu Lei, Yun Liu\",\"doi\":\"10.1109/Ubi-Media.2019.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain-specific knowledge graphs can represent complex domain knowledge in a structured format and have achieved great success in practical applications. Recently, knowledge graphs have been widely used in recommender systems because of their ability to integrate various recommendation models and deal with data sparseness and cold-start problems. In this paper, we propose an approach to extract movie related information from Linked Open Data (LOD) and construct the knowledge graph of movie domain. And the Neo4j graph database, which is characterized by friendly user interface and quick inquiry, is used to visualize the knowledge graph.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

特定领域知识图能够以结构化的形式表示复杂的领域知识,在实际应用中取得了很大的成功。近年来,知识图因其集成各种推荐模型、处理数据稀疏性和冷启动问题的能力,在推荐系统中得到了广泛的应用。本文提出了一种从链接开放数据(LOD)中提取电影相关信息并构建电影领域知识图谱的方法。利用界面友好、查询快捷的Neo4j图形数据库实现知识图谱的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing Movie Domain Knowledge Graph Based on LOD
Domain-specific knowledge graphs can represent complex domain knowledge in a structured format and have achieved great success in practical applications. Recently, knowledge graphs have been widely used in recommender systems because of their ability to integrate various recommendation models and deal with data sparseness and cold-start problems. In this paper, we propose an approach to extract movie related information from Linked Open Data (LOD) and construct the knowledge graph of movie domain. And the Neo4j graph database, which is characterized by friendly user interface and quick inquiry, is used to visualize the knowledge graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1