有效的3D特征学习实时意识

Ta-Ying Cheng
{"title":"有效的3D特征学习实时意识","authors":"Ta-Ying Cheng","doi":"10.1109/SMARTCOMP58114.2023.00059","DOIUrl":null,"url":null,"abstract":"This extended abstract discusses the current methods and work progress on sampling large-scale point cloud datasets with semantics and reconstructing 3D objects from sparse inputs. In particular, we describe a proposed meta sampling strategy to quickly adapt sampling to multiple tasks and potential methods to improve multi-modal reconstruction. These methods could benefit immensely in creating in-depth situational awareness for challenging missions and rescues.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient 3D Feature Learning for Real-Time Awareness\",\"authors\":\"Ta-Ying Cheng\",\"doi\":\"10.1109/SMARTCOMP58114.2023.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This extended abstract discusses the current methods and work progress on sampling large-scale point cloud datasets with semantics and reconstructing 3D objects from sparse inputs. In particular, we describe a proposed meta sampling strategy to quickly adapt sampling to multiple tasks and potential methods to improve multi-modal reconstruction. These methods could benefit immensely in creating in-depth situational awareness for challenging missions and rescues.\",\"PeriodicalId\":163556,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP58114.2023.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了基于语义的大规模点云数据集采样和从稀疏输入重建三维物体的现有方法和工作进展。特别地,我们描述了一种提出的元采样策略,以快速适应采样的多任务和潜在的方法,以提高多模态重建。这些方法可以极大地有利于为具有挑战性的任务和救援创造深入的态势感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient 3D Feature Learning for Real-Time Awareness
This extended abstract discusses the current methods and work progress on sampling large-scale point cloud datasets with semantics and reconstructing 3D objects from sparse inputs. In particular, we describe a proposed meta sampling strategy to quickly adapt sampling to multiple tasks and potential methods to improve multi-modal reconstruction. These methods could benefit immensely in creating in-depth situational awareness for challenging missions and rescues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching Humanoid Robots to Assist Humans for Collaborative Tasks Keynotes A Novel Context Aware Paths Recommendation Approach for the Cultural Heritage Enhancement Internet of Things in SPA Medicine: A General Framework to Improve User Treatments Nisshash: Design of An IoT-based Smart T-Shirt for Guided Breathing Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1