OSD2F:开源数据捐赠框架

Theo Araujo, J. Ausloos, Wouter van Atteveldt, Felicia Loecherbach, Judith Moeller, Jakob Ohme, D. Trilling, Bob van de Velde, Claes H. de Vreese, Kasper Welbers
{"title":"OSD2F:开源数据捐赠框架","authors":"Theo Araujo, J. Ausloos, Wouter van Atteveldt, Felicia Loecherbach, Judith Moeller, Jakob Ohme, D. Trilling, Bob van de Velde, Claes H. de Vreese, Kasper Welbers","doi":"10.31235/osf.io/xjk6t","DOIUrl":null,"url":null,"abstract":"The digital traces that people leave through their use of various online platforms provide tremendous opportunities for studying human behavior. However, the collection of these data is hampered by legal, ethical and technical challenges. We present a framework and tool for collecting these data through a data donation platform where consenting participants can securely submit their digital traces. This approach leverages recent developments in data rights that have given people more control over their own data, such as legislation that now mandates companies to make digital trace data available on request in a machine-readable format. By transparently requesting access to specific parts of this data for clearly communicated academic purposes, the data ownership and privacy of participants is respected and researchers are less dependent on commercial organizations that store this data in proprietary archives. In this paper we outline the general design principles, the current state of the tool, and future development goals.","PeriodicalId":275035,"journal":{"name":"Computational Communication Research","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"OSD2F: An Open-Source Data Donation Framework\",\"authors\":\"Theo Araujo, J. Ausloos, Wouter van Atteveldt, Felicia Loecherbach, Judith Moeller, Jakob Ohme, D. Trilling, Bob van de Velde, Claes H. de Vreese, Kasper Welbers\",\"doi\":\"10.31235/osf.io/xjk6t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The digital traces that people leave through their use of various online platforms provide tremendous opportunities for studying human behavior. However, the collection of these data is hampered by legal, ethical and technical challenges. We present a framework and tool for collecting these data through a data donation platform where consenting participants can securely submit their digital traces. This approach leverages recent developments in data rights that have given people more control over their own data, such as legislation that now mandates companies to make digital trace data available on request in a machine-readable format. By transparently requesting access to specific parts of this data for clearly communicated academic purposes, the data ownership and privacy of participants is respected and researchers are less dependent on commercial organizations that store this data in proprietary archives. In this paper we outline the general design principles, the current state of the tool, and future development goals.\",\"PeriodicalId\":275035,\"journal\":{\"name\":\"Computational Communication Research\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Communication Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31235/osf.io/xjk6t\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Communication Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31235/osf.io/xjk6t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

人们通过使用各种在线平台留下的数字痕迹为研究人类行为提供了巨大的机会。然而,这些数据的收集受到法律、道德和技术挑战的阻碍。我们提出了一个框架和工具,通过数据捐赠平台收集这些数据,同意的参与者可以安全地提交他们的数字痕迹。这种方法利用了数据权利方面的最新发展,这些发展使人们对自己的数据有了更多的控制权,例如现在立法要求公司应请求以机器可读的格式提供数字跟踪数据。通过透明地请求访问这些数据的特定部分,以明确传达学术目的,参与者的数据所有权和隐私得到尊重,研究人员减少了对将这些数据存储在专有档案中的商业组织的依赖。在本文中,我们概述了一般设计原则,工具的当前状态,以及未来的发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OSD2F: An Open-Source Data Donation Framework
The digital traces that people leave through their use of various online platforms provide tremendous opportunities for studying human behavior. However, the collection of these data is hampered by legal, ethical and technical challenges. We present a framework and tool for collecting these data through a data donation platform where consenting participants can securely submit their digital traces. This approach leverages recent developments in data rights that have given people more control over their own data, such as legislation that now mandates companies to make digital trace data available on request in a machine-readable format. By transparently requesting access to specific parts of this data for clearly communicated academic purposes, the data ownership and privacy of participants is respected and researchers are less dependent on commercial organizations that store this data in proprietary archives. In this paper we outline the general design principles, the current state of the tool, and future development goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using State-of-the-art Emotion Detection Models in a Crisis Communication Context How COVID-19 and the News Shaped Populism in Facebook Comments in Seven European Countries. : A Computational Analysis. Agent-based modeling of diversity, new information and minority groups in opinion formation Going Micro to Go Negative? Algorithmic Recommendations’ Role for the Interrelatedness of Counter-Messages and Polluted Content on YouTube – A Network Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1